
REACT: IR-Level Patch Presence Test for Binary
Qi Zhan

Zhejiang University
Hangzhou, China
qizhan@zju.edu.cn

Xing Hu∗
Zhejiang University
Hangzhou, China
xinghu@zju.edu.cn

Xin Xia
Software Engineering Application Technology Lab,

Huawei
China

xin.xia@acm.org

Shanping Li
Zhejiang University
Hangzhou, China
shan@zju.edu.cn

ABSTRACT

Patch presence test is critical in software security to ensure that
binary files have been patched for known vulnerabilities. It is chal-
lenging due to the semantic gap between the source code and the
binary, and the small and subtle nature of patches. In this paper, we
propose React, the first patch presence test approach on IR-level.
Based on the IR code compiled from the source code and the IR code
lifted from the binary, we first extract four types of feature (return
value, condition, function call, and memory store) by executing the
program symbolically. Then, we refine the features from the source
code and rank them. Finally, we match the features to determine the
presence of a patch with an SMT solver to check the equivalence
of features at the semantic level.

To evaluate our approach, we compare it with state-of-the-art
approaches, BinXray and PS3, on a dataset containing binaries
compiled from different compilers and optimization levels. Our
experimental results show that React achieves scores of 0.88, 0.98,
and 0.93, in terms of precision, recall, and F1 score, respectively.
React outperforms the baselines by 39% and 12% in terms of the F1
score, while the pure testing speed of our approach is 2x faster than
BinXray and 100x faster than PS3. Furthermore, we conduct an
ablation study to evaluate the effectiveness of each component in
React, which shows that SMT solver and refinement can contribute
to 16% and 10% improvement in terms of the F1 score, respectively.

KEYWORDS

Patch presence test, security, program analysis

ACM Reference Format:

Qi Zhan, Xing Hu, Xin Xia, and Shanping Li. 2024. REACT: IR-Level Patch
Presence Test for Binary. In Proceedings of 39th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2024). ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

∗Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE 2024, October 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Customized Binaries

May affect?
Is Patched?

Patch Presence
Test tool

Vulnerable

Patched

Patch (diff)Existing Vulnerability

Affect

Figure 1: Background of patch presence test

1 INTRODUCTION

Open-source software is widely used in various fields, such as
operating systems [36], web servers [20], and databases [21]. Many
companies and organizations rely on open-source software to build
their products and services. According to the Veracode report [37],
96% of organizations use open-source libraries.

Although the company benefits from open-source software, it
also introduces some security problems. As shown in Figure 1, a
common workflow in companies is to customize the open-source
library to meet the specific requirements of users and release only
binaries to them. Users are usually aware of the information about
open source libraries used. Problems arise when vulnerabilities
are found in open-source software. Attackers may steal important
information or remotely take control of the entire system through
these vulnerabilities caused by used open-source components. Users
want to know whether the binary files they are using are vulnerable
or not. Furthermore, the vulnerability can be fixed by applying a
patch, and it is essential to ensure that these binary files have
been patched for the corresponding vulnerabilities. The process for
ensuring this is referred to as the patch presence test.

The patch presence test determines whether a specific patch has
been applied to a target binary. The input consists of two parts:
(1) information about a particular patch and the source code of
corresponding project; (2) the target binary to be tested. The output
of the patch presence test is a binary decision as to whether the
specific patch is present in the target binary.

Determining whether a given binary file has been patched for
a corresponding vulnerability is challenging. The key challenge is
the semantic gap between the source code and the binary, making it
difficult to reason about the presence of a small modification in the
binary. Many techniques have been proposed [24, 38, 40, 42, 44] to

https://orcid.org/0000-0002-6800-1857
https://orcid.org/0000-0003-0093-3292
https://orcid.org/0000-0002-6302-3256
https://orcid.org/0000-0003-2615-9792
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ASE 2024, October 2024, Sacramento, CA, USA Qi Zhan, Xing Hu, Xin Xia, and Shanping Li

automate patch presence test in binaries or Java bytecode. A typical
workflow for the binary-level patch presence test is to compile the
source code before and after the patch commit to the corresponding
binaries. Then, they compare the binaries with the target binary to
determine whether the patch has been applied. These approaches
formulate the problem from “source to binary” to “binary to binary”.

Although these approaches have achieved reasonable results,
the lack of semantic information makes analyzing binary code dif-
ficult, especially when the target binary is compiled from different
compiler optimizations. Generally, the patch file is used to map
the line number of the source code modifications to the binary
code according to the debug information so that one can recognize
which part of the assembly code is added in the patch. However, the
rich information in the source code is ignored. In addition, these
approaches usually focus on binary in one architecture (FIBER for
Arm64 [44], PS3 for Amd64 [42]) and cannot be easily migrated to
other architectures.

In this paper, to address the aforementioned challenges, we pro-
pose an approach called React, referred to iR lEvel pAtch presenCe
Test, to conduct patch presence test on the intermediate representa-
tion (IR) level. We obtain the reference IR codes before and after the
patch by compiling the source code and target IR code by binary
lifting [2]. Compared with previous work, we formulate the prob-
lem from the “source to binary” to “IR to IR”. IR can help bridge the
semantic gap between the source code and the binary, as semantic
relationships in the same language are more straightforward. Fur-
thermore, analyzing IR is more convenient than analyzing binary
codes. The other advantage is that it can be applied to different ar-
chitectures and executables in different operating systems directly
as long as they can be lifted to IR.

To take advantage of the IR code, we perform fine-grained anal-
ysis on the IR level, including feature generation, refinement tech-
nique, and feature matching:

❶ Feature Generation. We extract four types of features from
the lifted and complied IR code, including return value, function call,
memory store, and condition by execution basic blocks symbolily.

❷ Feature Refinement. The generated features may not be
suitable for matching directly due to compiler optimization and
local variables. We propose a novel feature refinement technique to
simplify the features while keeping the unique parts and ranking
them based on their importance.

❸ Feature Matching. We compare the features extracted from
the complied and the lift IR code one by one to determine the
presence of a patch. We utilize an SMT solver to compare the equiv-
alence of features at the semantic level.

Considering the widespread use of LLVM [7, 28, 35], mainstream
binary lifting tools [1, 19, 41] choose LLVM IR for the lifting target.
Therefore, we implement our approach on top of LLVM IR and
use RetDec [26] to lift binaries. We expand the dataset proposed
by Zhan et al. [42] and compare our approach with two state-of-
the-art approaches, BinXray [40] and PS3 [42]. The experimental
results show that our approach outperforms the baselines by 39%
and 12% in terms of the F1 score. We also evaluate the results of our
approach compared to PS3 for every combination of compiler and
optimization level, demonstrating that our approach is more robust
to compiler optimization. In addition, we conducted an ablation
study to evaluate the effectiveness of each component proposed in

our approach, which shows that the refinement technique and SMT
solver bring 10% and 16% improvements in terms of the F1 score,
respectively. Finally, we compare the efficiency of our approach
with the baselines. The results show that React is able to detect
the patch in 0.025 seconds on average, which is 100 times faster
than PS3 and 2 times faster than BinXray.
Contributions: In this paper, we make the following contributions:

• We formulate the patch presence test task from “source to
binary ” to “IR to IR” and propose React, the first IR-based
approach for patch presence test to our best knowledge.
• We design a fine-grained analysis framework for patch pres-
ence test, including feature generation, refinement, andmatch.
• We systematically evaluate our approach on the dataset, and
the results show its effectiveness with high precision and
speed.

The remainder of the paper is organized as follows. Motivation
is outlined in Section 2, while the design and implementation of
the framework are detailed in Section 3. The evaluation steps and
results of React are presented in Section 4. Section 5 examines
the threats to validity of our approach and investigates why some
patches are not detected. Section 6 provides a summary of related
research. We conclude the paper in Section 7.

2 MOTIVATION

This section discusses the motivation behind our approach through
several read-world patches.

2.1 Binary Lifting

To see why binary lifting is useful in patch presence test, we list the
source code, one possible target binary, compiled IR, and lifted IR for
CVE-2021-23841 [14] in Figure 2. The patch is to add a new check for
f in the original C code. As we track the data dependency of f , we
can find that the value of f is return value of X509_NAME_oneline
and the argument of the function call is a->cert_info.issuer ,
NULL , 0 , respectively. Due to the semantic gap between the source
code and the binary code, it is difficult to map every modified state-
ment to binary. Although we can find that underlined statement in
the target binary is indeed the same condition check, data tracking
and recovery are much more difficult and tedious. In addition, we
have to take many instruction set architecture-dependent features
into account, e.g. calling convention, register usage, so that we can
analyze the binary correctly.

Compared with source-to-binary mapping, it is much easier to
compare the compiled and lifted IR. The underlined statement in
the compiled and lifted IR represents the semantic of the patch.
The getelementptr instruction in the compiled IR is to calculate the
offset to access elements of arrays and structs, which corresponds
to add arg1, 48 in the lifted IR. The later call and icmp (int-
comparison) instruction is to check the return value of the function
call. Based on both IR, we can decide the target binary as patched.
We can unify all analyses and operations for source and binary as
we compile or lift them to the same language, which provides the
foundation for fine-grained analysis in the following.

The feature extracted from the above example is a condition to
check if the function call value is NULL . In addition to the condition

REACT: IR-Level Patch Presence Test for Binary ASE 2024, October 2024, Sacramento, CA, USA

define i64 X509_issuer_and_serial_hash(a)
%2 = alloca [16 x i8]
%3 = call EVP_MD_CTX_new()
%4 = icmp eq %struct.evp_md_ctx_st* %3, null
br %4, label %5, label %6

5:
br label %61

6:
%7 = getelementptr(a, 0, 0)
%8 = getelementptr(%7, 0, 3)
%9 = load %8
%10 = call X509_NAME_oneline(%9, null, 0)
%11 = icmp eq i8* %10, null
br %11, label true, label false

define i64 X509_issuer_and_serial_hash(%arg1)
%0 = alloca i8
%1 = load %0
%2 = load %0
%3 = load %0
%4 = call __readfsqword(40)
%5 = call EVP_MD_CTX_new()
%6 = icmp eq i64 %5, 0

br %6, label end, label then
then:

%7 = add %arg1, 48
%8 = inttoptr i64 %7 to i64*
%9 = load %8
%10 = call X509_NAME_oneline(%9, 0, 0)
%11 = icmp eq i64 %10, 0
br %11, label true, label false

diff --git crypto/x509/x509_cmp.c
index c9d8933640..a964bbf94b 100644
--- a/crypto/x509/x509_cmp.c
+++ b/crypto/x509/x509_cmp.c
@@ -39,6 +39,8 @@
unsigned long X509_issuer_and_serial_hash(X509 *a)

if (ctx == NULL)
goto err;

f = X509_NAME_oneline(a->cert_info.issuer, NULL, 0);
+ if (f == NULL)
+ goto err;

if (!EVP_DigestInit_ex(ctx, EVP_md5(), NULL))
goto err;

if (!EVP_DigestUpdate(ctx, (unsigned char *)f, strlen(f)))

Original C Code `X509_issuer_and_serial_hash:
endbr64 cmpq $0x0, -0x30(%rbp)
pushq %rbp je 0x25556a
movq %rsp, %rbp movq -0x48(%rbp), %rax
subq $0x50, %rsp movq 0x30(%rax), %rax
movq %rdi, -0x48(%rbp) movl $0x0, %edx
movq %fs:0x28, %rax movl $0x0, %esi
movq %rax, -0x8(%rbp) movq %rax, %rdi
xorl %eax, %eax callq 0x258ddf; X509_NAME_oneline
movq $0x0, -0x38(%rbp) movq %rax, -0x28(%rbp)
callq 0x191b69; EVP_MD_CTX_new cmpq $0x0, -0x28(%rbp)
movq %rax, -0x30(%rbp) je 0x25556d

Target Binary

Compile

LLVM IR compiled by Clang LLVM IR lifted by RetDec

Lifting

Figure 2: A case study comparing LLVM IR lifted by RetDec with LLVM IR compiled by clang. Both IR codes have been

extensively simplified for readability.

and function call, we also select the return value and memory store
as features to extract.

2.2 Patch Analysis

Although tracking backward data dependency is a general ap-
proach for feature extraction [22, 23, 44], it is not enough. For ex-
ample, in the first patch of Figure 3a, it fixes a wrong assignment to
ret on line 4, which is later used as a return value. Since both vul-
nerable and patched functions call X509_STORE_CTX_get_error
with the same argument, i.e., ctx , the backward data flow and
dependency are the same in both versions. Only after analyzing
the forward data flow and finding the change of return value can
we decide whether the binary has been patched.

Beyond generation, we also need to consider the matching pro-
cess. Feature generation cannot be perfect, especially for complex
arithmetic operations, for example, division or bitwise operations.
The compiler may optimize the code and generate very different
instructions from the same source code [5]. In addition, as register
allocation and instruction scheduling are different, it is difficult to
locate a modification of local variables accurately. Complex oper-
ations and local variables may affect the result if we compare the
feature exactly at the syntactic level. The above limitations moti-
vate us to simplify the features. As long as the feature is unique
under the context of the other features, we can remove some parts
of the feature to make it more general. For example, in the second
patch of Figure 3a, the only differences between the vulnerable
code and the patched code are the values of group_top + 1 and
group_top + 2 , while the other arguments of the function call
are the same. Thus, we can ignore the common part of the feature

and only keep the unique part. The features can be simplified to
bn_wxpand(-, bn_get_top(-) + 1) and
bn_wxpand(-, bn_get_top(-) + 2) , where “-” is a placeholder
for any value to match. This process is called feature refinement

in our approach.
The last lesson we learn from the patches is that not all fea-

tures are equally important. Although most patches are small and
subtle [29], there are some patches with more significant changes.
For example, in Figure 3b, there are seven deletion lines and seven
insertion lines. In this case, there is more than one feature to extract
and we can find that the call to the function ec_guess_cofactor
on line 16 is the most unique feature. If the function call feature is
found in the target code, we can confidently claim the presence of
the patch, since the entire function is added in the patch. The other
features are less important and can be used as supplements. This
motivates us to rank the features based on their importance and
focus on more unique features.

We conclude the discussion with the following insights.
 Insight 1. To generate the complete features for code diff, we
need to track data flow in both forward and backward directions.
 Insight 2. To decide the presence of a patch, we only need to
focus on the unique part of the feature.
 Insight 3. Not all features are equally important; features can be
ranked to focus on the most important ones.

Inspired by the above insights, we can sketch the outline of
our approach based on binary lifting. First, we consider the four
types of feature discussed above and define them formally. To track
bidirectional data flow, we symbolically execute the code and collect
features; To improve the generality of the features, we refine the

ASE 2024, October 2024, Sacramento, CA, USA Qi Zhan, Xing Hu, Xin Xia, and Shanping Li

1 @@ -59,9 +59,10 @@ static int ocsp_verify_signer(X509 *signer, int response,
2 ret = X509_verify_cert(ctx);
3 if (ret <= 0) {
4 - ret = X509_STORE_CTX_get_error(ctx);
5 + int err = X509_STORE_CTX_get_error(ctx);
6 ERR_raise_data(ERR_LIB_OCSP, OCSP_R_CERTIFICATE_VERIFY_ERROR,
7 - "Verify error: %s", X509_verify_cert_error_string(ret));
8 + "Verify error: %s", X509_verify_cert_error_string(err));
9 goto end;
10
11 @@ -206,8 +206,8 @@ int ec_scalar_mul_ladder(const EC_GROUP *group, EC_POINT *r,
12 cardinality_bits = BN_num_bits(cardinality);
13 group_top = bn_get_top(cardinality);
14 - if ((bn_wexpand(k, group_top + 1) == NULL)
15 - || (bn_wexpand(lambda, group_top + 1) == NULL)) {
16 + if ((bn_wexpand(k, group_top + 2) == NULL)
17 + || (bn_wexpand(lambda, group_top + 2) == NULL)) {
18 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
19 goto err;
20 }

(a) Patches of CVE-2022-1343 [15] and CVE-2018-0735 [9]

1 @@ -281,17 +370,17 @@ int EC_GROUP_set_generator(EC_GROUP *group, const

EC_POINT *generator,↩→
2 - if (order != NULL) {
3 - if (!BN_copy(group->order, order))
4 - return 0;
5 - } else
6 - BN_zero(group->order);
7 + if (!BN_copy(group->order, order))
8 + return 0;
9
10 - if (cofactor != NULL) {
11 + /* Either take the provided positive cofactor, or try to compute it */
12 + if (cofactor != NULL && !BN_is_zero(cofactor)) {
13 if (!BN_copy(group->cofactor, cofactor))
14 return 0;
15 - } else
16 + } else if (!ec_guess_cofactor(group)) {
17 BN_zero(group->cofactor);
18 + return 0;
19 + }

(b) Patch for CVE-2019-1547 [13]

Figure 3: Examples of patches from real-world projects, adjusted to fit the page.

Feature Generation

Feature
Refinement & Ranking

LLVM-IR

Source Code

Binary

Compile

Lifting
LLVM-IR

Feature Matching

SMT Solver

Figure 4: Overview of our approach

features while keeping the unique part; To find the most important
features, we rank the features based on their importance.

3 APPROACH

The overall framework of React is illustrated in Figure 4. We com-
pile the source code to two IR codes corresponding to the commit
before and after the patch, referred to as the vulnerable IR and
patched IR, respectively. Then we lift the target binary to LLVM IR,
referred to as target IR. Based on the generated IR codes, we execute
the IR code at symbolic level and collect the features in feature

generation. Then we refine the features from vulnerable IR and
patched IR to make them more comparable, and rank them to focus
on the most important ones. Finally, wematch the ranked features
with target IR to determine whether the binary is patched. During
feature matching, an SMT solver is used to prove the semantic
equivalence between the features.

3.1 Feature Generation

Feature generation serves as the foundation of our approach. All
subsequent steps are based on the features generated by the sym-
bolic executor. In this paper, we consider four types of features, i.e.,
return value, condition, memory store, and function call. The syntax
of the feature is shown in Figure 5. The expression can be com-
posed of binary and unary operations, a function call, or a constant.
arg(𝑖) and alloc(𝑖) represent the argument of the function and the

Expr e ≔ 𝑒 binop 𝑒 | unop 𝑒
| call(𝑒, 𝑒1, . . . , 𝑒𝑛) | const
| mem(𝑒) | arg(𝑖) | alloc(𝑖)

unop ≔ − | ¬ | · · ·
binop ≔ + | − | × | ÷ | · · ·
Call F ≔ 𝑓 (𝑒1, . . . , 𝑒𝑛)

Return R ≔ 𝑒

Store M ≔ (𝑒1, 𝑒2)
Cond C ≔ 𝑒

Figure 5: Syntax of feature

locations of the local variables, respectively, where 𝑖 is an integer.
mem(𝑒) represents the memory location pointed by the value of 𝑒 .

Return and condition features are represented as single expres-
sions, memory store is represented as the value and address pair,
and function call features are represented as the function name and
arguments. It is worth noting that for the memory store feature, we
only consider the address of an expression consisting of a function
argument or global variable. Store operations on local variables are
ignored, since they are not visible to the caller.

To extract the features, we symbolically execute the IR code.
We initialize the state with the function arguments as arg. The
basic block is executed in depth-first order, and the features are
collected in the execution trace. For each state, we maintain the data
flow by tracking the local variables and the memory store. Ordinary
arithmetic operations are executed as symbolic operations, resulting
in a symbolic expression. When encountering a conditional branch,
we record the symbolic expression as a condition feature. When
the basic block ends with a return instruction, we record the return
value as a return feature. When loading a value from memory, we
record the address and the value in the memory store feature. If the
address 𝑎 does not exist in current memory, we lazily initialize the
value and return it with a symbolic value mem(𝑎). All function

REACT: IR-Level Patch Presence Test for Binary ASE 2024, October 2024, Sacramento, CA, USA

calls are skipped and a symbolic call value is assigned to the variable
representing the return value. In the meantime, the function call
name with the symbolic parameters is recorded in the feature set.
As a result, we can obtain a total of three feature sets𝑉 , 𝑃,𝑇 for the
vulnerable IR, patched IR, and target IR, respectively.

3.2 Refinement & Ranking

After feature generation, we obtain the feature sets 𝑉 , 𝑃 for the
vulnerable and patched IR, respectively. We construct the initial
feature sets 𝑣, 𝑝 by removing the features in both 𝑉 and 𝑃 , i.e.,
(𝑣, 𝑝) = 𝑉 △𝑃 . The whole refinement and ranking process is shown
in Algorithm 1. The input of the algorithm is the four feature sets
mentioned above and the output is the ranked feature list. The
features of vulnerable and patched IR are refined by the features 𝑃
and 𝑉 (line 1 and line 2). We construct a bipartite graph𝐺 with the
vertex consisting of the refined features and the edge weight as the
similarity between the features. We pair the features according to
the maximum weight matching in the bipartite graph (line 6). The
features that are not matched are appended to the list (line 8 and
line 11). Finally, the features are ranked according to the importance
of the features (line 13).

Algorithm 1: Refinement & Ranking
Input: Initial feature sets, 𝑣, 𝑝,𝑉 , 𝑃
Output: Ranked feature list, 𝑣 ′, 𝑝′

1 𝑣 = {refine(𝑓 , 𝑃) | 𝑓 ∈ 𝑣} ; /* Section 3.2.1 */

2 𝑝 = {refine(𝑓 ,𝑉) | 𝑓 ∈ 𝑝};
3 𝑉 ← 𝑣

⋃
𝑝 ; /* Construct the vertex set */

4 𝐸 ← {(𝑎, 𝑏,S(𝑎, 𝑏)) | 𝑎 ∈ 𝑉 ,𝑏 ∈ 𝑃} ; /* Def 3.3 */

5 𝐺 ← (𝑉 , 𝐸);
6 𝑙𝑖𝑠𝑡 (𝑣 ′, 𝑝′) ←MaxWeightMatching(𝐺);
7 foreach 𝑣 ∈ 𝑣 \ 𝑣 ′ do
8 𝑙𝑖𝑠𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 ((𝑣, 𝑁𝑜𝑛𝑒));
9 end

10 foreach 𝑝 ∈ 𝑝 \ 𝑝′ do
11 𝑙𝑖𝑠𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 ((𝑁𝑜𝑛𝑒, 𝑝));
12 end

13 rank(𝑙𝑖𝑠𝑡) ; /* Section 3.2.2 */

14 return 𝑙𝑖𝑠𝑡

3.2.1 Refinement. The goal of feature refinement is to generalize
the features to make them easier to match. The intuition of re-

finement is that, while keeping the unique characteristics of

the feature, it should be as simple as possible. We can remove
some parts of the feature as long as they are unique in the context
of other parts of the feature.

To achieve this goal, we first expand the syntax of the expression
to include ⊤ as follows:

Expr e ≔ 𝑒 binop 𝑒 | unop 𝑒
| mem(𝑒) | const | arg(𝑖)
| ⊤

Symbol ⊤ can be considered as a wildcard that can match any
value. The process of removing some part of the feature is to replace

⊤

𝑓 (⊤,⊤,⊤)

𝑓 (𝑎,⊤,⊤) 𝑓 (⊤, 𝑏,⊤) 𝑓 (𝑎, 𝑏, 𝑔(⊤))

𝑓 (𝑎, 𝑏, 𝑔(𝑐 + ⊤)) 𝑓 (𝑎, 𝑏, 𝑔(⊤ + 2))

𝑓 (𝑎, 𝑏, 𝑔(𝑐 + 2))

Figure 6: Lattice of the feature 𝑓 (𝑎, 𝑏, 𝑐𝑎𝑙𝑙 (𝑐+2)). We only show

a subset of the lattice for simplicity.

the part with ⊤. The whole feature sets from the removed part can
constitute a lattice (L, ⊑), while partial order ⊒ can be defined
recursively based on 𝑥 ⊑ ⊤:

Definition 3.1 (Partial Order).

𝑙 ⊑ ⊤
𝑚 ⊏ 𝑚′ ⇒ mem(𝑝) ⊑ mem(𝑝′)
𝑒 ⊑ 𝑒′ ⇒ unop(𝑒) ⊑ unop(𝑒′)

𝑙1 ⊑ 𝑙 ′1 and 𝑙2 ⊑ 𝑙 ′2 ⇒ binop(𝑙1, 𝑙2) ⊑ binop(𝑙 ′1, 𝑙
′
2)

𝑙𝑖 ⊑ 𝑙 ′𝑖 for 𝑖 = 1, . . . , 𝑛 ⇒ call(𝑙1, . . . , 𝑙𝑛) ⊑ call(𝑙 ′1, . . . , 𝑙
′
𝑛)

Take a specfic feature 𝑓 (𝑎, 𝑏, 𝑔(𝑐 + 2)) for example, where 𝑎, 𝑏, 𝑐
are arguments and 𝑔, ℎ are function calls, the lattice is shown in
Figure 6. The higher the element in the lattice, the less informa-
tion it contains. The most general and useless element is ⊤, and
the most specific element is the original feature. Refinement is to
continuously add more information to the value until it is unique
compared with the target feature sets. From the top element ⊤ of
the lattice, there are many paths to the bottom element, i.e., the
original feature. We list some paths as follows:

⊤ ⊒ 𝑓 (⊤,⊤,⊤) ⊒ 𝑓 (𝑎,⊤,⊤) ⊒ 𝑓 (𝑎, 𝑏, 𝑔(𝑐 + ⊤)) ⊒ 𝑓 (𝑎, 𝑏, 𝑔(𝑐 + 2))
⊤ ⊒ 𝑓 (⊤,⊤,⊤) ⊒ 𝑓 (⊤, 𝑏,⊤) ⊒ 𝑓 (𝑎, 𝑏, 𝑔(⊤ + 2) ⊒ 𝑓 (𝑎, 𝑏, 𝑔(𝑐 + 2))

...

⊤ ⊒ 𝑓 (⊤,⊤,⊤) ⊒ 𝑓 (𝑎, 𝑏, 𝑔(⊤)) ⊒ 𝑓 (𝑎, 𝑏, 𝑔(𝑐 + ⊤)) ⊒ 𝑓 (𝑎, 𝑏, 𝑔(𝑐 + 2))

In general, for an arbitrary lattice, the possible paths are as
follows:

ASE 2024, October 2024, Sacramento, CA, USA Qi Zhan, Xing Hu, Xin Xia, and Shanping Li

⊤ = 𝑓0 ⊒ 𝑓11 ⊒ 𝑓12 ⊒ · · · ⊒ 𝑓1𝑛 = 𝑓

⊤ = 𝑓0 ⊒ 𝑓21 ⊒ 𝑓22 ⊒ · · · ⊒ 𝑓2𝑛 = 𝑓

...

⊤ = 𝑓0 ⊒ 𝑓𝑚1 ⊒ 𝑓𝑚2 ⊒ · · · ⊒ 𝑓𝑚𝑛 = 𝑓

𝑓𝑖 𝑗 ∈ L

The whole refinement process under context 𝐹 is to iterate over
the paths, from the most general feature ⊤ to the most specific
feature 𝑓 until we find the smallest 𝑖 satisfying:

𝑓𝑖−1 ∈̂ 𝐹 ∧ 𝑓𝑖 ∉̂ 𝐹

where the order can be determined by deep-first or bread-first
search along the lattice. The meaning of ∈̂ here is similar to the
common operator ∈, except that we consider ⊤ to be equal to any
value. Note that the element and paths are finite and 𝑓 ∉ 𝐹 (we
have already removed the feature if it is in 𝐹), so we can always
find such 𝑖 . In addition, the result of the refinement is not unique.

Example 3.2. Returning to our patch example for motivation,
bn_wexpand(lambda, group_top + 2) is refined to 𝑏 (⊤,⊤ + 2)
by the following path:

⊤ → 𝑏 (⊤,⊤) → 𝑏 (⊤,⊤ + 2)

where we abbreviate the function name bn_wexpand to 𝑏. Noting
that group_top and lambda are refined to ⊤ since expression
+ 2 is the unique part of the feature. The refinement process can-
not stop at 𝑏 (⊤,⊤), as it exists in the patched IR features. Similarly,
we refine the formula for vulnerable IR to 𝑏 (⊤,⊤ + 1).

3.2.2 Ranking. After refinement, we rank the features based on
the importance of the features. The features in vulnerable and
patched IR are seen as two groups of vertex in a bipartite graph. The
definition of weight for an edge is given by the following definition,
which allows items with similar features and characteristics to be
paired together.

Definition 3.3 (Similarity).

S(⊤, 𝑥) = S(𝑥,⊤) = 1,
S(const(𝑣), const(𝑣 ′)) = 1, if 𝑣 = 𝑣 ′

S(mem(𝑙),mem(𝑟)) = 1 + S(𝑙, 𝑟)
S(unop(𝑙), unop(𝑟)) = 1 + S(𝑙, 𝑟)

S(binop(𝑙1, 𝑙2), binop(𝑟1, 𝑟2)) = 1 + S(𝑙1, 𝑟1) + S(𝑙2, 𝑟2)

S(call(𝑙1, . . . , 𝑙𝑛), call(𝑟1, . . . , 𝑟𝑛)) = 1 +
𝑛∑︁
𝑖=1
S(𝑙𝑖 , 𝑟𝑖)

S(𝑙, 𝑟) = 0, otherwise

As a result, we can construct a bipartite graph 𝐺 = (𝑉 , 𝐸) with
the vertex consisting of the refined features and the edge weight as
the similarity between the features. The goal is to find the matching
that maximizes the sum of the edge weight, and it is indeed a bipar-
tite graph matching problem. We use the Hungarian algorithm [27]
to solve the problem of combining maximum weights.

After obtaining the results for the graph matching, we are ready
to rank the features. Matched features are preferred because we can
detect them in both vulnerable and patched IR. For the same group
(matched or unmatched) features, a higher complexity means that it
is of lower importance because they aremore unlikely to bematched
for the target features. The complexity of the feature is defined
recursively on the basis of the complexity of the subexpression,
which can be formally defined as follows.

Definition 3.4 (Complexity).

C(⊤) = 0,
C(const(𝑣)) = 1
C(unop(𝑒)) = 1 + C(𝑒),

C(binop(𝑒1, 𝑒2)) = 1 + C(𝑒1) + C(𝑒2),
C(mem(𝑒)) = 1 + C(𝑒),

C(call(𝑓 , 𝑒1, . . . , 𝑒𝑛)) = 1 +
𝑛∑︁
𝑖=1
C(𝑒𝑖),

3.3 Feature Matching

Based on the ranked feature lists, wematch themwith target feature
sets 𝑇 one by one. For every pair of features 𝑣, 𝑝 , there are a total
of four cases:
• 𝑣, 𝑝 both exist or both do not exist in the target feature set,
we consider the next feature pair.
• 𝑣 exists in the target feature set, but 𝑝 does not, we consider
the target as vulnerable.
• 𝑝 exists in the target feature set, but 𝑣 does not, we consider
the target as patched.

Since the patch presence test is security critical, we make a con-
servative decision when none of the feature pairs matches, and
we consider the target vulnerable. The only exception is when
the patch file is a pure deletion of code, which means that there
should be no feature matched in the patched target. In this case, we
consider the target patched.

In the feature matching process, the ⊤ generated in the refine-
ment is considered as a wildcard that can match any value. If the
feature cannot match any of the features in the target feature list,
we use the SMT solver [17] to prove the equivalence of the fea-
tures. For each pair of features 𝑎, 𝑏, we transform them into SMT
constraints 𝑎 ≠ 𝑏 and check the satisfiability. If the constraints are
unsatisfiable, we consider the pair as match; otherwise, we regard
them as mismatch. The argument and allocation of functions are
modeled as variables. The memory load and call to functions are
modeled as global functions.

3.4 Implementation

We implement React in Rust1. We compile the source code for
LLVM IR2 with optimization levels of O0 and O3 with Clang 14.03 to
combat the inline function caused by optimization. We use RetDec

1https://www.rust-lang.org/
2https://llvm.org/
3https://clang.llvm.org/

https://www.rust-lang.org/
https://llvm.org/
https://clang.llvm.org/

REACT: IR-Level Patch Presence Test for Binary ASE 2024, October 2024, Sacramento, CA, USA

5.04 to lift the binary to LLVM IR. Z35 is used for SMT solving
in feature matching. We also transform the expressions into the
canonical form following KLEE [6], which makes it easier to match.

In feature generation, for the phi instruction in LLVM IR, we al-
low the corresponding basic block to be executed up to the number
of incoming blocks of the phi instruction to meet all possible incom-
ing values. We transform the index calculation in the instruction
gep into the calculation of the offset of the structure so that it can
be matched to the IR lifted from the binary. When encountering
arguments that are pointers to an integer or string (i.e., array of
unsigned char), we extract the point-to integer or string and record
it as the argument in the function call feature.

We need to limit the power of refinement because of the uncer-
tainty of the target binary. Original refinement is good enough if the
target binary always complies with the commit before or after the
patch. However, the developer can modify the code and the target
binary might be compiled from newer code so that refined features
may match irrelevant features. For example, feature 𝑓 ((𝑎 + 2), 𝑏)
might be refined to 𝑓 ((⊤ +⊤),⊤), which is unique in reference IRs.
However, the feature matches 𝑓 (𝑐 + 𝑑,𝑔(𝑒)) from a new function
call added in the target binary, which is unexpected. Therefore, we
limit the refinement by (1) one level replacement in call feature and
(2) const value and function call name can not be replaced by ⊤.
These rules limit refinement and improve accuracy.

4 EVALUATION

To evaluate the effectiveness of our approach, we conducted exper-
iments following three research questions.
RQ.1 How effective is our approach at patch presence test com-

pared to the state-of-the-art baselines
RQ.2 Does our refinement, ranking, and SMT solver technique

improve the performance of our approach?
RQ.3 How efficient is React?

4.1 Experimental Setup

4.1.1 Baselines. We compare React with two baselines:
BinXray [40]. A state-of-the-art patch presence test tool with-

out the presence of source code. BinXray is a similarity-based ap-
proach that uses basic block mapping to extract the signature of a
patch by comparing vulnerable and patched binary programs.

PS3 [42]. A state-of-the-art patch presence test approach de-
signed to combat compiler optimization. PS3 is based on the sym-
bolic signature of the function, which is extracted from the binary.

We do not consider FIBER [44] and PDiff [24] in our evaluation
because the features they extracted are kernel code specific, which is
unsuitable for our dataset. The patch presence test on Java bytecode
is also not our baseline.

4.1.2 Dataset. We conducted experiments on the dataset proposed
in PS3 [42]. The dataset consists of four projects, i.e., OpenSSL,
FFmpeg, LibXML2, and tcpdump. It contains 62 CVEs and 3,631 test
cases compiled from different compilers, including GCC and Clang,
with varying levels of optimization, from O0 to O3. We exclude
one CVE from the dataset because PS3 cannot find the correctly

4https://github.com/avast/retdec
5https://github.com/Z3Prover/z3

vulnerable function in the binary. Each test case aims to check for
the presence of a specific patch in a specific binary. Furthermore,
we extend the original dataset used in PS3 [42] by adding CVEs
from the same projects and constructing test cases following PS3.
In total, our dataset contains 70 CVEs and 4,156 test cases. We list
the statistics of our dataset in Table 1 and highlight the number of
additional test cases.

As our approach is based on LLVM IR, we lift the binary to
LLVM IR using RetDec for each binary in the original data set,
which constructs target IRs. For each CVE, we compile the source
code before and after the patch commit to emit the LLVM IR directly,
which constructs vulnerable IRs and patched IRs. We manually fix
the constant value in lifted LLVM IR, which is obviously incorrect
corresponding to the binary, and report the mislifting issue to the
RetDec team.

4.1.3 Metrics. Following previous work [31, 42] in the patch pres-
ence test, we use precision (P), recall (R), and F1 score (F1) as metrics
to evaluate our approach with other baselines.

Precision Let 𝑅𝑅 represent the count of truly vulnerable binaries
detected, and 𝑅𝐼 represent the count of patched binaries mistakenly
identified as vulnerable. Precision (𝑃) can then be formulated as:

𝑃 =
𝑅𝑅

𝑅𝑅 + 𝑅𝐼
Recall indicates the proportion of truly vulnerable binaries de-

tected 𝑅𝑅 out of all vulnerable binaries present 𝑅𝑁 . Recall (𝑅) can
be expressed as:

𝑅 =
𝑅𝑅

𝑅𝑁

F1 Score assesses the overall effectiveness of the test. With
precision (𝑃) and recall (𝑅) defined, the F1 score is computed as
follows:

𝐹1 =
2𝑃𝑅
𝑃 + 𝑅

4.2 Results

4.2.1 Effectiveness of our approach vs. baselines. To answer RQ1,
we compare the effectiveness of our approach with the baselines in
terms of precision, recall, and the F1 score. The results are shown
in Table 2.

React achieves the highest precision, recall, and F1 score among
the three approaches. The F1 score of our approach is 12% and
39% higher than PS3 and BinXray, respectively. BinXray achieves
an F1 score of 0.67, which is lower than PS3 and our approach. It
cannot identify the patch when compiler optimization is applied;
thus, it decides that the binary is vulnerable by default. Compared
to React, PS3 only considers forward instructions. In cases where
the root of the vulnerability lies backward, as shown in Figure 3a,
PS3 is unable to identify the differences.

To further compare our approach with PS3, we list the perfor-
mance of each compiler option in Table 3. We have the following
findings:

(1) Our approach outperforms PS3 in the all compiler options,
while the lowest F1 score of our approach is as high as the
highest F1 score of PS3.

https://github.com/avast/retdec
https://github.com/Z3Prover/z3

ASE 2024, October 2024, Sacramento, CA, USA Qi Zhan, Xing Hu, Xin Xia, and Shanping Li

Table 1: Statistics of our dataset

Project #CVE Clang & O0 GCC & O0 Clang & O1 GCC & O1 Clang & O2 GCC & O2 Clang & O3 GCC & O3 #Test
#V #P #V #P #V #P #V #P #V #P #V #P #V #P #V #P

OpenSSL 27 164 200 170 202 155 156 163 173 155 155 151 135 155 171 151 135 2,591 (+358)
FFmpeg 30 85 127 85 127 61 88 66 90 61 88 53 78 61 78 53 78 1,289 (+166)
Tcpdump 11 33 11 33 11 21 7 24 8 21 7 24 8 21 7 21 6 263
LibXml2 2 2 0 4 0 2 0 1 0 1 0 1 0 1 0 1 0 13 (+1)
Total 70 (+8) 284 338 292 340 239 251 254 271 238 250 229 221 238 266 226 219 4,156 (+525)
#P represents the number of patched pairs while #V represents vulnerable pairs.

Table 2: Effectiveness of our approach vs. baselines

Approach Precision Recall F1

BinXray 0.51 0.96 0.67
PS3 0.75 0.93 0.83
React 0.88 0.98 0.93

(2) The performance on the GCC compiler is better than that on
the Clang compiler for both approaches. It is reasonable for
PS3 because the reference binary is compiled by GCC. For
our approach, the reason may be that the RetDec is more
suitable to lift the GCC compiled binary.

(3) The F1 score of PS3 ranges from 0.79 to 0.90, while the F1
score of React ranges from 0.90 to 0.95. Although the F1
score of our approach and PS3 drops as the optimization
level increases, our approach is more robust to compiler
optimization.

Answer to RQ1: React can effectively identify the patch with
a F1 score of 0.93. It outperforms BinXray and PS3 by 39% and
12%, respectively. In addition, our approach outperforms PS3
in all compiler options.

4.2.2 Abalation Study. To investigate the contribution of feature
refinement, ranking, and SMT solver in the effectiveness of our
approach, we performed an ablation study. We create the following
variants:
• -Smt: SMT solver is removed. We only compare the features
at syntactic level.
• -Rank: Feature ranking is removed. We use the original
feature set to match the features without matching them
together and ranking them.
• -Refinement: We skip the feature refinement step and di-
rectly match the features.

We evaluated the four variants on the same dataset, as described
in Section 4.1.2. The results are illustrated in Table 4. F1 score
decreases by 16%, 1.1%, 10% when the SMT solver, ranking step,
and refinement are removed.

❶ The reason why the SMT solver is important in our approach
is that it can check the equivalence of features at a semantic level.
For example, it is a common case that the compiler optimizes the
code 𝑎 < 4 to 𝑎 ≤ 3 when 𝑎 is an integer. The syntactic of the
two expressions is different, but the semantic features are the same.

With the help of the SMT solver, React can correctly detect the
presence of a patch.

❷ Ranking does not contribute much to the effectiveness of our
approach. This is because most patches are small [29] and there
are few features to extract, and most test cases do not benefit from
feature ranking directly. When encountering a situation like that
in Figure 3b, ranking can make a difference and improve results.

❸ The refinement step can improve the F1 score by 10%. As we
mentioned in Section 3, the refinement step can reduce the negative
impact of local variables and complex arithmetic operations. For
example, in Figure 7, the refined feature for sigalg != NULL in
line 6 is @tls1_lookup_sigalg(T) = 0, where the function call
tls1_lookup_sigalg is from line 3. In contrast, the original feature
involves complex computations of offset and array indexes in its
arguments. In IR lifted from the target binary, RetDec fails to recover
the correct offset. As a result, React fails to detect the patch without
the refine technique.

1 @@ -2130,7 +2130,7 @@ static int tls1_check_sig_alg(SSL *s, X509 *x, int

default_nid)↩→
2 sigalg = use_pc_sigalgs
3 ? tls1_lookup_sigalg(s->s3->tmp.peer_cert_sigalgs[i])
4 : s->shared_sigalgs[i];
5 - if (sig_nid == sigalg->sigandhash)
6 + if (sigalg != NULL && sig_nid == sigalg->sigandhash)
7 return 1;
8 }

Figure 7: Patch of CVE-2020-1967 [11]

Answer to RQ2: Our approach benefits from the SMT solver
and feature refinement, which can improve the F1 score by 16%
and 10%, respectively.

4.2.3 Efficiency of our approach. To answer RQ3, we compare
the time cost of our approach with BinXray and PS3. We list the
average, minimum, and maximum times for one testcase in Ta-
ble 5. Our approach takes an average of 0.025 seconds to test the
patch presence of binaries, which is the fastest among the three
approaches. The reason may be that our approach is implemented
in Rust, which is more efficient than the Python implementation
of PS3 and BinXray. In addition to the programming language, the
ranking step in our approach can reduce the number of features to
match, which saves time. In contrast, PS3 compares all extracted
features and decides the presence of the patch by voting, which is

REACT: IR-Level Patch Presence Test for Binary ASE 2024, October 2024, Sacramento, CA, USA

Table 3: Results on different compiler options

Compiler Option Combination PS3 React

Precision Recall F1 Precision Recall F1

GCC & O0 0.88 0.91 0.90 0.92 0.98 0.95
GCC & O1 0.77 0.96 0.86 0.89 1 0.94
GCC & O2 0.77 0.96 0.85 0.87 1 0.93
GCC & O3 0.77 0.96 0.85 0.87 1 0.93
Clang & O0 0.72 0.92 0.81 0.91 0.98 0.94
Clang & O1 0.74 0.92 0.82 0.86 0.96 0.91
Clang & O2 0.70 0.92 0.79 0.85 0.96 0.90
Clang & O3 0.69 0.92 0.79 0.85 0.96 0.90

Table 4: Ablation study

Approach Precision Recall F1

React 0.87 0.98 0.93
-Smt 0.66 0.99 0.80 (↓16%)
-Rank 0.88 0.95 0.92 (↓1.1%)
-Refinement 0.79 0.95 0.86 (↓10%)

Table 5: Time cost of our approach vs. baselines (seconds)

Approach Max Min Average

BinXray 0.1 - 0.06
PS3 23 0.14 3
React 0.317 0.003 0.025

time-consuming. BinXray does not utilize an SMT solver and only
performs similarity-based matching, so it is much faster than PS3.

Answer to RQ3: React can test the patch presence of binaries
with an average of 25 milliseconds, which is 100x faster than
PS3 and 2x faster than BinXray.

5 DISCUSSION

5.1 Why React fails

We manually inspect the test case where React fails and find out
why React fails to detect the patch. The reasons as follows:
• Mislifting: The lifted IR code is not semantically equivalent
to the original binary, making it impossible to detect the
patch based on the IR code [2].
• Complier optimization: The key semantic information
extracted by our approach is lost during optimization.
• Lack of context: The feature extracted is only unique un-
der the context of constraints, but our approach does not
consider them and takes them as duplicate features.

5.1.1 Mislifting. Our approach is based on binary lifting tools to
obtain the intermediate representation of the binary, so miscompi-
lation of the lifted IR code may unavoidably affect the result of our

approach. For example, in the CVE-2018-14468 patch in Figure 8a,
RetDec cannot recover the string "(invalid length)" on line 6
in the lifted IR code, which exits the original binary. As a result, the
lifted IR code is not semantically equivalent to the original binary,
making it impossible to detect the patch based on the lifted IR code.
In addition, control flow is sometimes misrecovered. As the lifting
tool improves [25, 43, 45], we believe that the problem of mislifting
can be mitigated over time.

1 @@ -493,6 +493,11 @@ mfr_print(netdissect_options *ndo,
2 switch (ie_type) {
3 case MFR_CTRL_IE_MAGIC_NUM:
4 + /* FRF.16.1 Section 3.4.3 Magic Number Information Element */
5 + if (ie_len != 4) {
6 + ND_PRINT((ndo, "(invalid length)"));
7 + break;
8 + }
9 ND_PRINT((ndo, "0x%08x", EXTRACT_32BITS(tptr)));

(a) Patch of CVE-2018-14468 [10]

1 @@ -257,6 +257,9 @@ int ossl_rsaz_mod_exp_avx512_x2(BN_ULONG *res1,
2 from_words52(res1, factor_size, rr1_red);
3 from_words52(res2, factor_size, rr2_red);
4
5 + /* bn_reduce_once_in_place expects number of BN_ULONG, not bit size */
6 + factor_size /= sizeof(BN_ULONG) * 8;
7 bn_reduce_once_in_place(res1, /*carry=*/0, m1, storage, factor_size);
8 bn_reduce_once_in_place(res2, /*carry=*/0, m2, storage, factor_size);

(b) Patch of CVE-2022-2274 [16]

1 @@ -3272,6 +3272,7 @@ static int open_files(OptionGroupList *l, const char

*inout,↩→
2 if (ret < 0) {
3 av_log(NULL, AV_LOG_ERROR, "Error parsing options for %s file "
4 "%s.\n", inout, g->arg);
5 + uninit_options(&o);
6 return ret;
7 }
8 av_log(NULL, AV_LOG_DEBUG, "Opening an %s file: %s.\n", inout, g->arg);
9 ret = open_file(&o, g->arg);
10 uninit_options(&o);

(c) Patch of CVE-2020-20451 [12]

Figure 8: Case study examples

5.1.2 Compiler Optimization. Though we consider the compiler’s
optimization level, the resulting IR may lose some semantic in-
formation. For example, the patch in Figure 8b changes the fifth
parameter of the call function bn_reduce_once_in_place . Our

ASE 2024, October 2024, Sacramento, CA, USA Qi Zhan, Xing Hu, Xin Xia, and Shanping Li

algorithm should detect the patch, as React can find that the pa-
rameter is from the original value of factor_size to the modified
value of factor_size / sizeof(BN_ULONG) * 8 . However, the
function call in the lifted IR does not contain five parameters, since
the compiler recognizes that the fifth parameter must be a constant
value and optimizes it. This kind of optimization based on program
analysis is difficult to detect using our approach.

5.1.3 Lack of Context. In the case where features generated in
vulnerable and patched IR code are unique under the context of
constraints, our approach fails to detect the patch. For example, in
Figure 8c, the function call uninit_options is not unique because
there exists the same function call with the same parameter on line
10. React cannot distinguish the call to the function on lines 5
and 10, which leads to the failure to detect the patch. In our future
work, we plan to consider the context to improve our approach’s
accuracy.

5.2 Execution Path

In feature generation, we perform a basic block execution and
permit multiple times on phi block. However, it is still not enough
to obtain all possible features. In an ideal case, we should iterate
all paths that do not contain a basic block more than two times
from the entry of the function to the exit so that every possible
useful feature can be collected. There can exist exponential paths
that need to be executed, which is not feasible in practice. Thus, we
have to make a trade-off by limiting the paths in our approach. The
common basic block is only allowed to be executed once, whereas
the basic block starting by the phi instruction can be executed up
to the number of incoming blocks.

5.3 Threats to Validity

As mentioned in Section 5.1.1, the miscompilation of the IR code
lifted threatens our approach’s internal validity. The symbolic exe-
cution in our approach is not complete and only considers certain
program paths, which may lead to the loss of some features. Our
approach cannot identify the patches if the target binary’s symbol
table does not contain the target function.

We only conduct the experiments for binaries compiled for the
Intel X86 64-bit system, though our approach is intended to sup-
port any architecture, even cross-architecture. We do not consider
the preprocessing time in RQ3, as BinXray must work on top of
IDA-Pro [32], PS3 needs to compile the reference binary, and our
approach must use lifted IR codes. It may affect the real-world
performance of our approach. In addition, the precision of the in-
formation on the affected version of the vulnerable software in the
National Vulnerability Database (NVD) is often inconsistent [4],
potentially affecting the accuracy of our dataset.

6 RELATEDWORK

In this section, we briefly review the work related to the patch
presence test. The summary is shown in Table 6.

Table 6: Summary of related work

Work Approach Year

Binary to Binary (C/C++)

FIBER [44] feature matching 2018
PDiff [24] feature similarity 2020
BinXray [40] basic block mapping 2020
Osprey [34] lightweight flow slices 2021
PatchDiscovery [39] key basic blocks 2023
PS3 [42] SMT solver 2024

Source to Binary (Java)

BSCOUT [8] first work in Java 2020
PHunter [38] against obfuscation 2023
PPT4J [31] find-grained semantics 2024

IR to IR (LLVM IR)

React

6.1 C/C++ Binary

Zhang et al. [44] are the first to publish patch presence testing,
introducing the “patch presence test” and proposing FIBER for ker-
nel customization scenarios. FIBER uses angr [33] and VEX [30] to
generate fine-grained binary signatures from patch files and debug
information, reflecting changes made by patch modifications. These
signatures determine whether the target binary has been patched.
Following FIBER, Jiang et al. [24] introduce PDiff, a system that
uses images from the downstream kernel for highly reliable patch
presence testing. PDiff relies on semantic similarity in patch check-
ing, offering high fault tolerance for code changes. Compared to
FIBER, PDiff achieves high-precision testing with an exceptionally
low miss rate in experiments. Considering the high overhead of
symbolic execution technology in FIBER [3], Sun et al. [34] propose
Osprey, which utilizes lightweight copy propagation and data flow
slices instead of symbolic execution. This modification enables Os-
prey to accelerate the testing process by more than 10 times without
significantly compromising accuracy, maintaining a performance
of over 90% in their experiments.

PS3 [42] uses the SMT solver to verify the equivalence of sig-
natures at the semantic level. PS3 is designed to directly utilize
signatures for patch presence testing, which can achieve high accu-
racy in the presence of compiler optimization. In addition, PS3 uses
extracted signatures for voting rather than ranking them exploited
in our approach. Our feature generation is inspired by BLEX [18],
while we use LLVM IR as input language.

The studies mentioned above are based on the existence of source
code, while Xu et al. [40] propose BinXray. It does not presume the
existence of the source code and patch commit. BinXray derives
patch signatures through a comparison between a vulnerable code
snippet and its patched counterpart using a basic block mapping
algorithm. In 2023, following BinXray, Xu et al. [39] propose a
novel algorithm to capture the signatures of key basic blocks, which
outperforms BinXray.

REACT: IR-Level Patch Presence Test for Binary ASE 2024, October 2024, Sacramento, CA, USA

6.2 Java Bytecode

In addition to the detection of executable files compiled in the
mainstream C/C++ languages mentioned above, there are also some
work that focus on Java bytecodes. Compared with executable
binary, Java bytecodes contain much richer semantic information,
and optimization is performed at runtime (known as JIT) rather
than compile time. Hence, the accuracy of the patch presence test
for Java bytecode is usually higher than that of binaries.

Dai et al. [8] propose BSCOUT, which is the first tool that can
check the existence of patches in Java files. It checks fine-grained
patch semantics in the entire target executable. Pan et al. [31]
propose PPT4J, which uses type analysis and control flow informa-
tion to generate find-grained patch semantics, which outperforms
BSCOUT. To counteract the challenge introduced by code obfus-
cation in Android applications, Xie et al. [38] propose PHunter to
address the challenge by combining coarse-grained search for the
target code and fine-grained patch semantics.

Compared with all previous work which are essentially binary-
to-binary or source-to-binary, our approach is the first to use LLVM
IR as the input language. This means that our approach can detect
not only binaries compiled from the C/C++ language, but also other
programming languages compiled to LLVM IR, like Rust.

7 CONCLUSION

Detecting the presence of patches in binary code is a critical task
in software security. Existing approaches are based on source code
or binary code, which have limitations in terms of accuracy and
efficiency. In this paper, we propose React, the first patch presence
test approach based on binary lifting. We extract symbolic-level
features from reference and target IR codes, then match the features
to determine the presence of a patch. In addition, we propose a
feature refinement method to improve the generality of the features.
The experimental results show that React outperforms the current
approaches by 0.93 in terms of the F1 score. In practice, React can
efficiently detect the presence of patches in an average of 0.025
seconds per binary.

Our implementation and dataset are available at https://github.
com/Qi-Zhan/React.

ACKNOWLEDGMENTS

This research is supported by Ningbo Natural Science Foundation
(No. 2023J292).

REFERENCES

[1] Anil Altinay, Joseph Nash, Taddeus Kroes, Prabhu Rajasekaran, Dixin Zhou,
Adrian Dabrowski, David Gens, Yeoul Na, Stijn Volckaert, Cristiano Giuffrida,
et al. 2020. BinRec: dynamic binary lifting and recompilation. In Proceedings of
the Fifteenth European Conference on Computer Systems. 1–16.

[2] Anil Altinay, Joseph Nash, Taddeus Kroes, Prabhu Rajasekaran, Dixin Zhou,
Adrian Dabrowski, David Gens, Yeoul Na, Stijn Volckaert, Cristiano Giuffrida,
Herbert Bos, and Michael Franz. 2020. BinRec: dynamic binary lifting and recom-
pilation. In Proceedings of the Fifteenth European Conference on Computer Systems
(Heraklion, Greece) (EuroSys ’20). Association for Computing Machinery, New
York, NY, USA, Article 36, 16 pages. https://doi.org/10.1145/3342195.3387550

[3] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and
Irene Finocchi. 2018. A Survey of Symbolic Execution Techniques. ACM Comput.
Surv. 51, 3, Article 50 (may 2018), 39 pages. https://doi.org/10.1145/3182657

[4] Lingfeng Bao, Xin Xia, Ahmed E. Hassan, and Xiaohu Yang. 2022. V-SZZ: Au-
tomatic Identification of Version Ranges Affected by CVE Vulnerabilities. In

Proceedings of the 44th International Conference on Software Engineering (Pitts-
burgh, Pennsylvania) (ICSE ’22). Association for Computing Machinery, New
York, NY, USA, 2352–2364. https://doi.org/10.1145/3510003.3510113

[5] Heiko Becker, Robert Rabe, Eva Darulova, Magnus O Myreen, Zachary Tatlock,
Ramana Kumar, Yong Kiam Tan, and Anthony Fox. 2022. Verified compilation
and optimization of floating-point programs in cakeml. In European Conference
on Object-Oriented Programming (ECOOP 2022).

[6] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. Klee: unassisted
and automatic generation of high-coverage tests for complex systems programs..
In OSDI, Vol. 8. 209–224.

[7] Yuandao Cai, Peisen Yao, and Charles Zhang. 2021. Canary: practical static de-
tection of inter-thread value-flow bugs. In Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation
(Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York,
NY, USA, 1126–1140. https://doi.org/10.1145/3453483.3454099

[8] Jiarun Dai, Yuan Zhang, Zheyue Jiang, Yingtian Zhou, Junyan Chen, Xinyu Xing,
Xiaohan Zhang, Xin Tan, Min Yang, and Zhemin Yang. 2020. BScout: Direct
whole patch presence test for java executables. In Proceedings of the 29th USENIX
Conference on Security Symposium. 1147–1164.

[9] National Vulnerability Database. 2018. CVE-2018-0735. https://nvd.nist.gov/
vuln/detail/CVE-2018-0735

[10] National Vulnerability Database. 2018. CVE-2018-14468. https://nvd.nist.gov/
vuln/detail/CVE-2018-14468

[11] National Vulnerability Database. 2020. CVE-2020-1967. https://nvd.nist.gov/
vuln/detail/CVE-2020-1967

[12] National Vulnerability Database. 2020. CVE-2020-20451. https://nvd.nist.gov/
vuln/detail/CVE-2020-20451

[13] National Vulnerability Database. 2021. CVE-2019-1547. https://nvd.nist.gov/
vuln/detail/CVE-2019-1547

[14] National Vulnerability Database. 2021. CVE-2021-23841. https://nvd.nist.gov/
vuln/detail/CVE-2021-23841

[15] National Vulnerability Database. 2022. CVE-2022-1343. https://nvd.nist.gov/
vuln/detail/CVE-2022-1343

[16] National Vulnerability Database. 2022. CVE-2022-2274. https://nvd.nist.gov/
vuln/detail/CVE-2022-2274

[17] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In
Tools and Algorithms for the Construction and Analysis of Systems, C. R. Ramakr-
ishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
337–340.

[18] Manuel Egele, Maverick Woo, Peter Chapman, and David Brumley. 2014. Blanket
execution: Dynamic similarity testing for program binaries and components. In
23rd {USENIX} Security Symposium ({USENIX} Security 14). 303–317.

[19] Alexis Engelke and Martin Schulz. 2020. Instrew: Leveraging LLVM for high
performance dynamic binary instrumentation. In Proceedings of the 16th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments.
172–184.

[20] Apache Software Foundation. 2024. Apache HTTP Server Project. https:
//httpd.apache.org/

[21] DuckDB Foundation. 2024. DuckDB. https://duckdb.org/
[22] Jian Gao, Yu Jiang, Zhe Liu, Xin Yang, Cong Wang, Xun Jiao, Zijiang Yang, and

Jiaguang Sun. 2021. Semantic Learning and Emulation Based Cross-Platform
Binary Vulnerability Seeker. IEEE Transactions on Software Engineering 47, 11
(2021), 2575–2589. https://doi.org/10.1109/TSE.2019.2956932

[23] Jian Gao, Xin Yang, Ying Fu, Yu Jiang, and Jiaguang Sun. 2018. VulSeeker: A
Semantic Learning Based Vulnerability Seeker for Cross-Platform Binary. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering (Montpellier, France) (ASE ’18). Association for Computing Machin-
ery, New York, NY, USA, 896–899. https://doi.org/10.1145/3238147.3240480

[24] Zheyue Jiang, Yuan Zhang, Jun Xu, Qi Wen, Zhenghe Wang, Xiaohan Zhang,
Xinyu Xing, Min Yang, and Zhemin Yang. 2020. Pdiff: Semantic-based patch
presence testing for downstream kernels. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security. 1149–1163.

[25] Lukáš Korenčik. 2019. Decompiling binaries into LLVM IR using McSema and
Dyninst. Ph. D. Dissertation. Masarykova univerzita, Fakulta informatiky.

[26] Jakub Křoustek, Peter Matula, and Petr Zemek. 2017. Retdec: An open-source
machine-code decompiler. In July 2018.

[27] Harold W. Kuhn. 2010. The Hungarian Method for the Assignment Problem.
Springer Berlin Heidelberg, Berlin, Heidelberg, 29–47. https://doi.org/10.1007/
978-3-540-68279-0_2

[28] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In International symposium on code
generation and optimization, 2004. CGO 2004. IEEE, 75–86.

[29] Frank Li and Vern Paxson. 2017. A Large-Scale Empirical Study of Security
Patches. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (Dallas, Texas, USA) (CCS ’17). Association for Comput-
ing Machinery, New York, NY, USA, 2201–2215. https://doi.org/10.1145/3133956.
3134072

https://github.com/Qi-Zhan/React
https://github.com/Qi-Zhan/React
https://doi.org/10.1145/3342195.3387550
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3510003.3510113
https://doi.org/10.1145/3453483.3454099
https://nvd.nist.gov/vuln/detail/CVE-2018-0735
https://nvd.nist.gov/vuln/detail/CVE-2018-0735
https://nvd.nist.gov/vuln/detail/CVE-2018-14468
https://nvd.nist.gov/vuln/detail/CVE-2018-14468
https://nvd.nist.gov/vuln/detail/CVE-2020-1967
https://nvd.nist.gov/vuln/detail/CVE-2020-1967
https://nvd.nist.gov/vuln/detail/CVE-2020-20451
https://nvd.nist.gov/vuln/detail/CVE-2020-20451
https://nvd.nist.gov/vuln/detail/CVE-2019-1547
https://nvd.nist.gov/vuln/detail/CVE-2019-1547
https://nvd.nist.gov/vuln/detail/CVE-2021-23841
https://nvd.nist.gov/vuln/detail/CVE-2021-23841
https://nvd.nist.gov/vuln/detail/CVE-2022-1343
https://nvd.nist.gov/vuln/detail/CVE-2022-1343
https://nvd.nist.gov/vuln/detail/CVE-2022-2274
https://nvd.nist.gov/vuln/detail/CVE-2022-2274
https://httpd.apache.org/
https://httpd.apache.org/
https://duckdb.org/
https://doi.org/10.1109/TSE.2019.2956932
https://doi.org/10.1145/3238147.3240480
https://doi.org/10.1007/978-3-540-68279-0_2
https://doi.org/10.1007/978-3-540-68279-0_2
https://doi.org/10.1145/3133956.3134072
https://doi.org/10.1145/3133956.3134072

ASE 2024, October 2024, Sacramento, CA, USA Qi Zhan, Xing Hu, Xin Xia, and Shanping Li

[30] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation. SIGPLAN Not. 42, 6 (jun 2007), 89–100.
https://doi.org/10.1145/1273442.1250746

[31] Zhiyuan Pan, Xing Hu, Xin Xia, Xian Zhan, David Lo, and Xiaohu Yang. 2024.
PPT4J: Patch Presence Test for Java Binaries. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineering (ICSE ’24). Association
for Computing Machinery, New York, NY, USA, Article 225, 12 pages. https:
//doi.org/10.1145/3597503.3639231

[32] Hex Rays. 2023. IDA Pro. https://www.hex-rays.com/products/ida/
[33] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,

AndrewDutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
et al. 2016. Sok:(state of) the art of war: Offensive techniques in binary analysis.
In 2016 IEEE symposium on security and privacy (SP). IEEE, 138–157.

[34] Peiyuan Sun, Qiben Yan, Haoyi Zhou, and Jianxin Li. 2021. Osprey: A fast and
accurate patch presence test framework for binaries. Computer Communications
173 (2021), 95–106.

[35] Wensheng Tang, Dejun Dong, Shijie Li, Chengpeng Wang, Peisen Yao, Jinguo
Zhou, and Charles Zhang. 2024. Octopus: Scaling Value-FlowAnalysis via Parallel
Collection of Realizable Path Conditions. ACM Trans. Softw. Eng. Methodol. 33, 3,
Article 66 (mar 2024), 33 pages. https://doi.org/10.1145/3632743

[36] Linus Torvalds. 2024. The Linux Kernel Archives. https://www.kernel.org
[37] Veracode. 2020. State of Software Security. https://www.veracode.com/sites/

default/files/pdf/resources/reports/state-of-software-security-open-source-
edition-veracode-report.pdf

[38] Zifan Xie, Ming Wen, Haoxiang Jia, Xiaochen Guo, Xiaotong Huang, Deqing
Zou, and Hai Jin. 2023. Precise and Efficient Patch Presence Test for Android
Applications against Code Obfuscation. In Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis. 347–359.

[39] Xi Xu, Qinghua Zheng, Zheng Yan, Ming Fan, Ang Jia, Zhaohui Zhou, Haijun
Wang, and Ting Liu. 2023. PatchDiscovery: Patch Presence Test for Identifying
Binary Vulnerabilities Based on Key Basic Blocks. IEEE Transactions on Software
Engineering 49, 12 (2023), 5279–5294. https://doi.org/10.1109/TSE.2023.3332732

[40] Yifei Xu, Zhengzi Xu, Bihuan Chen, Fu Song, Yang Liu, and Ting Liu. 2020. Patch
based vulnerability matching for binary programs. In Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 376–387.

[41] S. Yadavalli and Aaron Smith. 2019. Raising binaries to LLVM IR with MCTOLL
(WIP paper). 213–218. https://doi.org/10.1145/3316482.3326354

[42] Qi Zhan, Xing Hu, Zhiyang Li, Xin Xia, David Lo, and Shanping Li. 2024. PS3:
Precise Patch Presence Test based on Semantic Symbolic Signature. In Proceedings
of the IEEE/ACM 46th International Conference on Software Engineering (ICSE ’24).
Association for Computing Machinery, New York, NY, USA, Article 167, 12 pages.
https://doi.org/10.1145/3597503.3639134

[43] Bowen Zhang, Wei Chen, Peisen Yao, Chengpeng Wang, Wensheng Tang, and
Charles Zhang. 2024. SIRO: Empowering Version Compatibility in Intermediate
Representations via Program Synthesis. In Proceedings of the 29th ACM Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3 (ASPLOS ’24). Association for Computing Machinery,
New York, NY, USA, 882–899. https://doi.org/10.1145/3620666.3651366

[44] Hang Zhang and Zhiyun Qian. 2018. Precise and Accurate Patch Presence Test
for Binaries.. In USENIX Security Symposium. 887–902.

[45] Anshunkang Zhou, Chengfeng Ye, Heqing Huang, Yuandao Cai, and Charles
Zhang. 2024. Plankton: Reconciling Binary Code and Debug Information. In
Proceedings of the 29th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2 (ASPLOS ’24).
Association for Computing Machinery, New York, NY, USA, 912–928. https:
//doi.org/10.1145/3620665.3640382

https://doi.org/10.1145/1273442.1250746
https://doi.org/10.1145/3597503.3639231
https://doi.org/10.1145/3597503.3639231
https://www.hex-rays.com/products/ida/
https://doi.org/10.1145/3632743
https://www.kernel.org
https://www.veracode.com/sites/default/files/pdf/resources/reports/state-of-software-security-open-source-edition-veracode-report.pdf
https://www.veracode.com/sites/default/files/pdf/resources/reports/state-of-software-security-open-source-edition-veracode-report.pdf
https://www.veracode.com/sites/default/files/pdf/resources/reports/state-of-software-security-open-source-edition-veracode-report.pdf
https://doi.org/10.1109/TSE.2023.3332732
https://doi.org/10.1145/3316482.3326354
https://doi.org/10.1145/3597503.3639134
https://doi.org/10.1145/3620666.3651366
https://doi.org/10.1145/3620665.3640382
https://doi.org/10.1145/3620665.3640382

	Abstract
	1 Introduction
	2 Motivation
	2.1 Binary Lifting
	2.2 Patch Analysis

	3 Approach
	3.1 Feature Generation
	3.2 Refinement & Ranking
	3.3 Feature Matching
	3.4 Implementation

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Discussion
	5.1 Why React fails
	5.2 Execution Path
	5.3 Threats to Validity

	6 Related Work
	6.1 C/C++ Binary
	6.2 Java Bytecode

	7 Conclusion
	References

