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Abstract—Deep learning programs are continually enhanced
for improved performance through the use of kernel-level
optimizations, parallel training, and low-precision arithmetic.
These optimizations provide different implementations that are
mathematically equivalent. Round-off error in floating-point
computations can lead to differences in the outputs of these
implementations, even when the mathematical equivalence holds.
When the outputs of customized and reference implementations
exceed the tolerance thresholds, it is difficult for developers to
distinguish between acceptable round-off errors and implemen-
tation bugs. This paper proposes an approach called RENDER to
classify the numerical errors between two implementations based
on estimating the maximum round-off error. RENDER combines
dynamic interval arithmetic and round-off error analysis to
compute scalable and tight output bounds. We demonstrate the
effectiveness of our method on real-world issues by comparing it
with the state-of-the-art tool, SATIRE and a High-Precision Re-
execution baseline. Experimental results show that our approach
identifies at least 25% more errors and achieves an average
speedup of 19× compared to SATIRE, enabling developers to
debug and optimize implementations more efficiently.

Index Terms—Round-off error analysis, Deep learning pro-
grams, Interval arithmetic

I. INTRODUCTION

Deep learning (DL) has become a cornerstone of modern
computing, powering various applications, including computer
vision [1], natural language processing [2], and code genera-
tion [3]. The rapid growth of DL has also brought a new need
to optimize the performance and efficiency of DL programs
to handle increasingly large models.

To accelerate training and inference in deep learning, devel-
opers propose various methods. (1) Kernel and neural network-
level optimizations [4], [5]. Developers continuously improve
algorithms such as tiling and kernel fusion to fully utilize GPU
resources. (2) Distributed and parallel training [6]. To accom-
modate larger models, developers employ distributed training
methods such as data parallelism [7], model parallelism [8]
to scale training on multiple GPUs or machines. (3) Trade
precision for performance by employing low-precision arith-
metic such as FP16 [9] or even FP8 [10]. Conceptually, these
approaches implement a mathematically equivalent program
with different optimizations.

Since these multiple implementations are equivalent in
mathematics, comparing their outputs to validate correctness is
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Fig. 1: Motivation of the “allclose” problem when comparing
two implementations with a given input.

common practice. However, exact output matches are typically
impossible in deep learning programs because floating-point
computations are inherently imprecise due to finite-precision
representation and round-off errors. These errors can accumu-
late and propagate through computations, potentially resulting
in significant differences in the final outputs. Compared with
traditional numerical computing, low-precision floating-point
arithmetic is widely used in deep learning programs, which
amplifies the impact of rounding errors further.

To address this, developers usually examine the outputs by
absolute tolerances (atol) and relative tolerances (rtol). For
instance, PyTorch provides a torch.allclose function,
which determines whether two tensors are approximately equal
by ensuring each pair of elements satisfies the condition:
|input − reference| ≤ atol + |rtol × reference|. The specific
values of atol and rtol are usually determined empirically or
based on the datatype of the tensors.

As shown in Fig. 1a), the developer compares the output
from fused multiply-add kernel with the reference implemen-
tation in PyTorch and believes the kernel is correct when
allclose passes. The problem arises when allclose
fails, as shown in Fig. 1b). The developer writes cus-
tomized matrix multiplication and compares it with PyTorch’s
matmul, and it turns out that the two implementations pro-
duce different results that exceed the given tolerance. It is
challenging to identify the root cause in this case.
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The major concern of developers is whether they should
refine the implementation further or safely ignore the error and
continue developing. Therefore, the error and corresponding
resolution can be classified into two types:
1) Type-I: Acceptable Round-off error, which is inevitable

in floating-point computations. The error can be mitigated
by tuning the numerical precision of certain variables. After
balancing the trade-off between performance and precision,
the developer can increase the numerical precision or adjust
the atol and rtol to make the allclose pass.

2) Type-II: Implementation bug, which should be fixed by
developers. This error may arise from incorrect algorithms,
numerically unstable implementations, or faulty compiler
optimizations. Developers should refine the implementation
until the mismatch is resolved.

Compared to crashes or obvious results mismatches, debug-
ging and analyzing the root cause of floating-point programs
is notoriously challenging due to round-off errors. Developers
must analyze the errors carefully and compare the intermediate
step-by-step results, which is time-consuming and error-prone.
The two implementations may adopt fundamentally different
DL frameworks and algorithms, making it difficult to compare
the intermediate results. Furthermore, the source code of the
reference implementation is sometimes unavailable, as in the
case of libraries such as cuBLAS, making it impossible to
obtain the intermediate results.

The difficulty in identifying the root cause of errors can
cause developer confusion and may even obscure real bugs.
When facing output differences of a customized matrix mul-
tiplication kernel tl.dot() in Triton [11] with matmul in
PyTorch [12], the developer remarked in the issue1:

“Are there some bugs in tl.dot() or my test code?
This precision error shouldn’t be unacceptable.”

Another example is a long-standing implementation bug in the
gradient accumulation computation of Hugging Face Trans-
formers training [13]. Gradient accumulation is commonly
used to simulate larger batch sizes when memory constraints
prevent training with large batches. A developer found that
the training loss varied with batch size, which was initially
misattributed to round-off error in 2021. The problem was
eventually identified as an implementation error in gradient
accumulation, which had persisted for three years before being
fixed in 2024 [14]. This case illustrates that such implemen-
tation bugs can be subtle to diagnose and wrongly blamed on
round-off errors.

The above examples illustrate the importance of classifying
the two types of errors for developers. We formulate the
problem as follows:

Problem: Given a reference program and a target program,
the output by the two programs differs for a given input.
How can we determine whether the error is Type-I (round-
off error) or Type-II (bug)?

1https://github.com/triton-lang/triton/issues/2843

Our Solution. To solve this problem, we propose a novel
approach called RENDER, referred to Round-Off Error Esti-
matioN for Deep LEarning ProgRams. RENDER estimates a
round-off error bound rigorously for the target program and
classifies the error into two types. The idea is illustrated in
Fig. 2. Given a target program and the output (black dot),
our approach estimates both the lower and upper bounds of
the output. If the reference output falls within the bounds, we
consider the error to be due to round-off error and classify
it as Type-I ( green dot ). Developers can safely ignore the
differences and adjust atol and rtol. Otherwise, we conclude
that the error is due to implementation or compiler bugs and
classify it as Type-II ( red dot ). Developers can further refine
the implementations.

lower bound

upper bound

target

Type-I

Type-II

Fig. 2: The proposed method estimates the error bound for the
target program.

Challenges: Compared to traditional programs, new chal-
lenges arise when traditional round-off error estimation ap-
proaches are applied to DL programs directly. (1) The com-
putation involves a large number of operations, which requires
a scalable and efficient approach to estimate the error. (2) The
low-level implementation of operations is not fully transparent,
such as the matrix multiplication details, making it difficult to
estimate the bound accurately. To address these challenges,
RENDER estimates the maximum floating-point round-off er-
ror dynamically based on the following key ideas:

❶ Combine Interval Arithmetic and Error Analysis: As
computations in deep learning programs are typically large-
scale, we adopt a fast interval arithmetic-based approach to
estimate the interval of the output tensor for each operation. To
estimate the round-off error for non-transparent operations, we
combine the error analysis with the lower and upper bounds,
which ensures the error bound is sound regardless of the low-
level implementation.

❷ Dynamic Analysis: While conventional error analysis is
typically static, the concrete input in our problems offers an
opportunity to estimate errors dynamically. We rerun the target
program and estimate the interval of each tensor during its
execution. This allows us to avoid unnecessary overestimation
for operations such as max, min, and conditional statements.

❸ From Neural Network to Kernel-Level Bounds: A DL
program is typically a neural network composed of multiple
kernels. Our approach focuses on kernel-level estimation first
and automatically reduces the problem of the whole neural
network to a series of kernel estimations, which simplifies the
overall analysis and makes it scalable to large and complex
deep learning programs.
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We implement RENDER based on Triton [11] and Py-
Torch [12]. To evaluate our approach, we collect a dataset
from real-world issues about precision errors in the deep
learning community. There are 20 kernel-level test cases in
total, 16 of which are Type-I and 4 of which are Type-II. We
consider SATIRE [15], a state-of-the-art approach for comput-
ing rigorous rounding error bounds in large-scale programs
and a High-Precision Re-execution baselines. Compared to
baselines, our approach can successfully classify errors in 8
and 5 more cases, respectively. Among the successful cases,
our approach always provides a tighter error bound compared
with SATIRE. Furthermore, we evaluated our method on 7
real-world issues in neural networks and successfully analyzed
6 cases. Following the analysis, we submitted 5 feedback
reports to the communities, with 2 already acknowledged by
the developers. These results demonstrate the practical utility
of our approach in addressing precision-related issues.
Contributions: Our contributions are as follows:

• To the best of our knowledge, this is the first work to
classify the type of numerical error in the context of
DL programs and provide a solution to the problem by
estimating the maximum round-off error.

• We propose an approach to estimate the floating-point
round-off error for a single kernel and show how to
reduce the whole deep learning program to kernel levels.

• We evaluate our approach on a collection of DL pro-
grams derived from real-world issues and demonstrate its
effectiveness and efficiency.

The rest of the paper is organized as follows. Section II
presents the necessary background about floating-point num-
bers and error analysis. Section III describes our approach
in detail. Section IV presents the experimental setup and
evaluation. Section V provides a case study and discusses the
results and limitations of our approach. Section VI discusses
related work. Finally, Section VII concludes the paper.

II. PRELIMINARIES

This section presents the necessary background on floating-
point representations, error models, and how to use interval
arithmetic to estimate the error.

A. Floating-point Representation

Floating-point numbers approximate real numbers and can
represent only a finite subset of the continuous real number
space. According to the IEEE 754 standard [16], a floating-
point number is composed of three components: the sign (s),
the exponent (e), and the significand (m), and the value of the
number is given by:

(−1)s × 2e−bias × 1.m,

where the bias is a constant that depends on the floating-point
format. Table I illustrates the bit allocation of these com-
ponents in half-, single-, and double-precision floating-point
formats. In addition to the common types mentioned above,
there are also many low-precision floating-point formats, such

TABLE I: IEEE 754 Floating-Point Formats.

Format Sign Exponent Significand Machine Epsilon

Half 1 5 10 9.77×10−4

Single 1 8 23 1.19×10−7

Double 1 11 52 2.22×10−16

as bfloat16 (BF16) [17], TensorFloat32 (TF32) [18], FP8 [10],
which are used widely in deep learning.

The finite number of bits used to represent real numbers
inevitably introduces inaccuracies. The nearest representable
value may differ from the exact mathematical result by up to
half a unit in the last place (ULP), and this difference is known
as round-off error. IEEE 754 defines several rounding modes,
and we mainly focus on the downward rounding mode, which
rounds the result toward negative infinity, and the upward
rounding mode, which rounds toward positive infinity. These
modes ensure that the computed value is always less than or
equal (in downward rounding) or greater than or equal (in
upward rounding) to the exact result.

B. Error Model

As round-off error is inherently inaccurate in floating-point
computations, it is essential to measure this error. Let fl(·)
represent the result of an operation performed in floating-point
arithmetic. The relative error can be expressed as:

Errrel =

∣∣∣∣fl(x)− x

x

∣∣∣∣ ,
which quantifies how far the floating-point result is from the
exact value. According to the standard error model in the
textbook [19], we assume the following:

fl(x op y) = (x op y)(1 + δ), δ ≤ |u|,

where machine epsilon u is the upper bound on the relative
error [20]. The machine epsilon values for different floating-
point formats are provided in Table I.

This error model not only helps estimate the error of a
single operation but also enables us to understand how errors
propagate in multi-step computations. For example, consider
a summation of n floating-point numbers x1, x2, . . . , xn, each
with an error bounded by u. The error bound for the sum of
these numbers, as discussed in [19], can be expressed as:

∆ ≤ (n− 1)u
n∑

i=1

|xi|+O(u2). (1)

This equation reveals that the relative error of the summation
is primarily bounded by (n−1)u times the sum of the absolute
values of the input numbers. It is also worth noting that
this error bound holds regardless of the order in which the
summation is performed, which is particularly useful for DL
programs where the summation order is not fixed.
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Type-II Error

Upper Bound y

❸ Compare

Case a

f ref

❶ Init

Case b

Fig. 3: Overview of RENDER. The highlighted number indicates the item that causes the reference to be out of the interval.

C. Interval Arithmetic

Interval arithmetic offers a rigorous approach for measuring
the error in floating-point computations [21]. An interval
represents a set of real values, which can be defined as:
[a, a] = {a ∈ R | a ≤ a ≤ a}, where a, a are the lower and
upper bounds, respectively [22]. For function f , interval arith-
metic defines a corresponding function f̂ between intervals,
which ensures that f(a1, . . . , an) ∈ f̂([a1, a1], . . . , [an, an]),
i.e., the result conservatively bounds all possible values arising
from the corresponding real-number operations. For example,
given two intervals [a1, a2] and [b1, b2], their addition and
multiplication are defined as follows:

[a, a] + [b, b] = [a+ b, a+ b],

[a, a]× [b, b] = [min(ab, ab, ab, ab),max(ab, ab, ab, ab)]

Other operations can be defined similarly. Based on interval
arithmetic, we can rigorously bound the error in floating-point
computations by composing these elementary operations.

III. APPROACH

A. Overview

We illustrate how RENDER estimates the round-off error for
a single kernel and extend it to the whole neural network later.
The illustration is shown in Fig. 3. Given a target kernel f ,
a reference kernel f ref, and an input tensor x2, let y = f(x)
and yref = f ref(x). When a divergence occurs between y and
yref, our goal is to estimate the possible interval of y produced
by the target kernel f and determine whether the discrepancy
corresponds to a Type-I or Type-II error.

❶ We begin by initializing the input interval as [x,x] =
[x,x], as the input tensor for two kernels are same. ❷ During
the execution of the target kernel, we track the interval of each
intermediate tensor. Each operation in the kernel updates its
output interval based on the intervals of its inputs, following
the standard rules of interval arithmetic. At the end of the
computation, we obtain the output interval [y,y]. ❸ Compared
to the reference output, there are two cases: (a) If the reference
output yref falls within the interval, i.e. yref ∈ [y,y], meaning
that each element yref satisfies y ≤ yref ≤ y, the error is
attributed to round-off and classified as Type-I. (b) Otherwise,

2We use boldface to denote tensors and italics to denote scalars.

the error is classified as Type-II, indicating that it arise
from implementation mismatches. This classification helps
distinguish between acceptable round-off errors and potentially
critical errors caused by bugs.

B. Kernel Error Estimation

In this section, we detail the interval tracking step. We
describe how to estimate the interval of the output tensor for
each type of operation and how these intervals are propagated
through the computation.

1) Arithmetic Error Estimation: Arithmetic operations are
the primary source of round-off error. For each arithmetic op-
eration, we compute the error interval using standard interval
arithmetic. We have already discussed the interval arithmetic
for addition and multiplication in Section II. For monotonic
functions f such as the square root, we can apply them directly
to the interval bounds, i.e. f̂([a, a]) = [f(a), f(a)]. It is worth
noting that non-differentiable can also be handled, as long as
if their semantics can be modeled using interval arithmetic.
In addition to rounding errors, it is also necessary to account
for ULP error, which arises in many operations, especially in
hardware-accelerated computations and certain functions. For
example, CUDA documentation [23] specifies that fast divide
operations can introduce up to 2 ULP errors, and operations
like exp can introduce 1 ULP error. We list ULP errors of
common operations in Table II. By considering both rounding
and ULP errors, we can provide a more sound estimate of
the error introduced by each operation in the computation.
Specifically, given an interval [v, v] with machine epsilon ε and
an operation-specific error parameter δ (measured in ULPs),
we compute the new interval [v′, v′] by:

v′ =

{
v(1 + εδ), v ≥ 0,

v(1− εδ), v < 0,
v′ =

{
v(1− εδ), v ≥ 0,

v(1 + εδ), v < 0.

TABLE II: ULP error of common operations.

Operation ULP Error

Addition / Subtraction ≤ 1
Multiplication ≤ 1
Fast Division ≤ 2
Square Root (sqrt) ≤ 1
Exponential (exp) ≤ 1

94



Algorithm 1: Matrix Multiplication Error Estimation

Input: A[l,u] ∈ Rn×m, B[l,u] ∈ Rm×k,
multiplicative error ε∗, additive error ε+

Output: C [l,u] ∈ Rn×k: Interval bounds of AB
1 for i← 1 to n do
2 for j ← 1 to k do
3 a

[l,u]
i , b

[l,u]
j ← A[l,u][i, :], B[l,u][:, j];

4 ll, lu, ul, uu ← alib
l
j , alib

u
j , aui b

l
j , aui b

u
j ;

5 lo← min(ll, lu, ul, uu);
6 hi← max(ll, lu, ul, uu);
7 lo← lo · (1− ε∗), hi← hi · (1 + ε∗);
8 cl ←

∑
lo, cu ←

∑
hi;

9 cl ← cl −
∑
|lo| · (m− 1) · ε+;

10 cu ← cu +
∑
|hi| · (m− 1) · ε+;

11 C [l,u][i, j]← [cl, cu];
12 end
13 end
14 return C [l,u]

2) Precision Casting: It is common to cast the precision
of one tensor to either higher or lower precision to optimize
performance and improve memory efficiency [24]. The way we
handle precision casting depends on whether we are casting
to higher or lower precision:

• Higher Precision: When casting to a higher precision, the
interval of the output tensor is directly obtained from the
interval of the input tensor.

• Lower Precision: When casting to a lower precision, the
interval of the output tensor may be affected by precision
loss during the casting. We apply downward rounding
for the lower bound and upward rounding for the upper
bound, using the machine epsilon of the lower precision.

3) Non-Arithmetic Operations: Non-arithmetic operations
such as reshape, transpose, and gather do not intro-
duce numerical errors, as they do not involve any mathematical
computations that could result in rounding or approximation.
These operations typically only change the arrangement or
structure of the data in the tensor, and the interval of the
output tensor is simply propagated from the input tensor, with
appropriate shape transformations.

4) Conditional Statement: Handling conditional statements
is challenging in static error analysis [25], as the results depend
on the specific branch executed, and overestimation of the
error can occur when multiple branches are considered. As a
dynamic approach, RENDER naturally supports control flow,
since it observes the concrete execution path during runtime.
For instance, in the case of the max operation, we assume
two input a, b with corresponding intervals [a, a] and [b, b]
respectively. The output c = max(a, b) will have an interval
determinded by if (a > b) then [a, a] else [b, b].

5) Summation and Matrix Multiplication: Matrix multipli-
cation is the most important operation in deep learning, it
should be handled carefully. Consider the matrix multiplication

as C = AB, where A ∈ Rn×m,B ∈ Rm×k,C ∈ Rn×k.
The element-wise computation of the output tensor C can be
expressed as:

C[i, j] =
m∑
q=1

A[i, q]×B[q, j].

The computation of each element involves m multiplications
and m − 1 additions. The total error in matrix multiplication
can be decomposed into three sources: (1) rounding error in
multiplication, (2) accumulation error in summation, and (3)
precision casting errors in hardware-specific implementations,
such as TensorCore with TF32. The details of matrix multipli-
cation in GPUs are tricky [26], as the precision and concrete
order of addition are not fully clear.

We propose an error model that explicitly accounts for
all three sources by incorporating multiplicative and additive
error bounds. The algorithm is shown in Algorithm 1. We
assume the elements of the input tensors are always positive
to simplify the algorithm. We use ε∗ to represent the machine
epsilon used in the multiplication and ε+ to represent the
machine epsilon used in the summation. The whole process
is a double loop to compute the output tensor element-wise.
For each element C[i, j], we first obtain the corresponding
row of A and column of B (Line 3). Based on interval
arithmetic of multiplication, we compute the lower and upper
bounds of the product (Line 4-6). As the rounding error in the
multiplication is less than 1 ULP, we round the multiplication
result downward and upward, respectively (Line 7). In the
end, we consider the summation error by Equation (1) and
update the interval of the output tensor (Line 9-11). In addition
to matrix multiplication, the summation operation can be
considered a specific case of matrix multiplication by setting
m = 1 in the algorithm. In this case, the error is only
introduced by the summation operation.

C. Neural Network Error Classification

1) General Idea: In the previous section, we discussed er-
ror estimation for a single kernel. Now, we extend the analysis
to neural networks composed of multiple kernels. Given a
target program P consisting of layers fn ◦ fn−1 ◦ · · · ◦ f1, a
reference program P ref consisting of layers f ref

n ◦f ref
n−1◦· · ·◦f ref

1 ,
and an input tensor x, we observe mismatches between the
output P (x) and P ref(x). Our objective remains the same:
determining the root cause of the mismatches.

Since a neural network consists of multiple layers, we can
naturally reduce the problem of mismatches in deep learning
programs to a series of kernel-level problems. Starting from
the first layer f1 and f ref

1 , we apply the kernel-level estimation
for this layer, and continue this process layer by layer until
the last layer fn and f ref

n . The error is decided as Type-II if
one layer is decided as Type-II. The main difference between
single kernel and neural network error estimation is that we
need to account for the different input tensors produced by the
previous layers. As a result, the lower and upper bounds of
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the initial intervals are not simply the same as the input value.
For the ith layer when i > 1, the initial interval is defined as

[min(fi−1 ◦ · · · ◦ f1(x), f ref
i−1 ◦ · · · ◦ f ref

1 (x)),

max(fi−1 ◦ · · · ◦ f1(x), f ref
i−1 ◦ · · · ◦ f ref

1 (x))].

Here, min and max are applied element-wise, ensuring the
computed bounds are large enough to enclose the true results.

2) Layer Approximation: In real-world deep learning pro-
grams, some layers are difficult to analyze due to their complex
implementation or the unavailability of source code. To prevent
these layers from hindering the process, we develop approxi-
mations to bound the results in such cases. Take softmax as an
example, which is a monotonic function for each variable. In
the case of we cannot obtain the source code, we can use the
mathematical properties of the function to derive the bounds.
Assume the input variables and corresponding intervals are
xi ∈ [xi, xi], i = 1, . . . , n. We have the lower bound of xi by

exi∑
ex ̸=i + exi

≥ exi∑
ex
≈ softmax(x)× e(xi−xi).

Similarly, we use softmax(x) × e(xi−xi) to approximate the
upper bound. For functions that are not monotonic such as
sin, we use the possible maximum and minimum value to
approximate the interval.

3) Efficient Error Analysis in Practice: The method de-
scribed above is general enough to work with any pair of
deep learning programs. However, estimating the error for
each layer in the neural network can be slow in practice and
error accumulation is inherent to interval methods in deep
networks. RENDER mitigates this by providing layer-level
granularity for error analysis. It allows users to examine any
continuous layers they want so that our approach does not need
to analyze the whole deep model. In real-world applications,
a common scenario involves developers replacing only small
parts of layers in the original programs with customized
kernels to speed up, such as attention mechanisms or fused loss
functions. In such cases, we only need to start the analysis at
the first layer where the target and reference programs differ.
In addition, developers may sometimes be able to localize
precision issues to specific layers, rather than capturing the
loss mismatches in the final output. RENDER can end the
analysis early, before reaching the last layer of the program.
RENDER can be used to analyze any continuous layers in deep
learning programs, making it more practical.

IV. EVALUATION

To evaluate the effectiveness of our approach, we conduct
experiments based on the following research questions.

RQ.1 Can RENDER effectively classify the root causes of
errors in real-world issues about DL kernels compared
to existing techniques?

RQ.2 Can RENDER scale to handle the large number of oper-
ations in deep learning programs?

RQ.3 Can RENDER work at the neural network level, i.e., the
whole DL program?

In the first two questions, we focus on the effectiveness
and efficiency of kernel-level round-off error estimation, while
in the last question, we evaluate the performance within the
context of neural network models.

A. Experimental Setup
1) Dataset: We construct our evaluation dataset by collect-

ing real-world issues from the Triton community3. Triton con-
sists of a Python-based programming language and compiler
infrastructure designed for writing high-performance custom
kernels [11]. It has gained widespread adoption in the deep
learning community. Developers typically implement custom
kernels in Triton, such as matrix multiplication, and compare
the results against PyTorch [12] implementations based on
CUDA. When the differences exceed expected tolerances or
their expectations, they often report issues to the community,
which we use to build our dataset.

We searched GitHub issues using the keywords “error”,
“accurate” and “precision”, and filtered out cases unrelated
to numerical mismatches. We collect the code, input tensors,
test code, and atol (if it exists) from the issues. We initially
selected 92 issues from Triton communities. After filtering out
those unrelated to numerical problems (e.g., build failures,
performance issues), 25 cases remained. Issue #3013 is a
duplicate of #3017. Issues #3478, #2680a, #1493, and #4113
cannot be reproduced due to specific hardware or environmen-
tal requirements. As a result, 20 test cases related to precision
issues comprise our dataset. For closed issues, we manually
labeled the root cause of each error as either Type-I (round-
off error) or Type-II (implementation or compiler bugs) based
on the discussions and final resolutions. For the open issues,
we first analyze the corresponding issues and the comments
carefully, and resolve them in local environments based on
RENDER. Then, we posed the comments and solutions on
the issues to communicate with the developers and seek their
opinions. Finally, we labeled them based on the discussions
and communications. As a result, 16 cases were classified as
Type-I, and 4 as Type-II.

2) Implementation: Our implementation is built upon Tri-
ton [11], which provides a highly efficient platform for writing
custom deep learning primitives. We modified the Triton
interpreter by integrating interval arithmetic for each tensor
operation. Specifically, we track the interval of each tensor as
the kernel executes, ensuring that both the lower and upper
bounds of each tensor are updated at each operation. All
operations are implemented in a vectorized form utilizing
numpy, ensuring compatibility with batch computations and
efficiency. We use double precision for the lower and upper
bounds of the interval and the corresponding machine epsilon
for the error estimation. This enables us to model the propaga-
tion of rounding errors throughout the computation accurately.
In addition, we use numba4 to accelerate the computation
of the interval arithmetic, which significantly improves the
performance of our approach.

3https://github.com/triton-lang/triton/issues
4https://numba.pydata.org/
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Fig. 4: Comparison of the output tensor bound and the max difference between RENDER and SATIRE. For the cases where
SATIRE fails, we represent the interval bounds using “*” symbol. For the cases where RENDER and SATIRE yield identical
results, we use an “x” symbol to represent them. A smaller error (right side) is better.

3) Baseline: We consider the following baselines.
• SATIRE [15]. As RENDER is the first work to classify the

errors in deep learning programs by estimating the round-
off error, we compare it with an approach that aims to es-
timate the round-off error for floating-point computations.
SATIRE [15] is a scalable and rigorous error estimation
tool based on symbolic Taylor expansion. It is especially
designed for a large number of operations by several
heuristics, such as abstraction and path reduction, so it is
an appropriate baseline for RENDER. Since SATIRE does
not support mixed precision, we use the lowest possible
precision in each test case to ensure the soundness of
its estimated bounds. If the time required for analysis
is less than an hour, we use the default configuration.
However, if the analysis time exceeds one hour, we switch
to using abstraction techniques to speed up the process.
As SATIRE does not rely on Triton, we construct an
equivalent program in its format to facilitate comparison
with our approach.

• High-Precision Re-execution. We also consider a straight-
forward baseline where the program is re-executed with
higher precision. If the errors persists under higher pre-
cision, it is attributed to implementation bugs; otherwise,
it is classified as round-off errors.

We do not consider approaches that aim to detect numerical
bugs in neural networks, such as DEBAR [27], as a baseline
and the detail comparision is left in Section VI. All experi-
ments are conducted on a machine running Ubuntu 20.04 with
an A800 GPU and 64GB of memory.

B. Results

1) RQ1: Effectiveness: To answer RQ1, we apply RENDER
and baselines to the dataset. For each issue, we rerun the target
kernel and estimate the interval of the output tensor. If the
reference output falls within the interval, we classify the error
as Type-I; otherwise, we classify it as Type-II. The overall
results are summarized in Table III. The results demonstrate
that RENDER successfully classifies all issues in the dataset.

TABLE III: Overall results of our approach and baselines.

Issue ID GT RENDER SATIRE High Precision

#1924 Type-I ! ! !

#5990 Type-I ! ! !

#3017 Type-II ! ! !

#5895 Type-I ! ! !

#4551 Type-I ! % !

#1190 Type-I ! Fail !

#2843 Type-I ! % !

#1960 Type-I ! ! !

#2680 Type-I ! ! %

#376 Type-I ! ! !

#5065 Type-I ! Not Supported !

#1840 Type-I ! ! !

#1666 Type-II ! ! !

#1937 Type-I ! ! %

#1671 Type-I ! Timeout !

#1821 Type-II ! Timeout Not Supported
#4701 Type-II ! ! !

#1808 Type-I ! Timeout %

#1578 Type-I ! ! Not Supported
#6227 Type-I ! Timeout !

Total 20 12 15

Compared to RENDER, SATIRE only successfully classifies 12
out of 20 issues. The remaining 8 issues either timeout, do not
support FP8 floating-point format, or fail to provide a sound
interval. High-Precision Re-execution classifies 15 issues. It
indicates that RENDER is more effective in classifying the
root cause of errors in deep learning kernels. We provide the
detailed comparison between RENDER and the baselines in the
following sections.

Comparison with SATIRE. To further compare the tight-
ness of the bounds with SATIRE, we visualize the absolute and
relative errors of the output tensor with intervals estimated by
the two approaches for 16 Type-I error cases in Fig. 4. For the
cases where both SATIRE and RENDER successfully run, we
observe that our approach always provides a tighter interval
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than SATIRE. In some instances, SATIRE yields a relative
error of 10, while RENDER reduces it to 0.1, achieving a
maximum improvement of up to 100x. The main reason for the
overestimation of SATIRE is mixed precision, and we leave
the detailed analysis to the discussion.

Comparison with High-Precision Re-execution. Com-
pared with our approach, High-Precision Re-execution can
correctly classify 15 issues. In particular, it works well when
numerical errors are dominated by round-off errors and can
be mitigated by simply re-running the program with higher
precision. While it is effective for a subset of cases, it has
several limitations. First, it cannot handle scenarios where the
program is already executed in high precision (e.g., #1821,
#1578). Second, round-off error between the reference imple-
mentation and the target program may still exceed acceptable
thresholds even when using higher precision (e.g., #1937,
#1808), which can lead to misclassification of Type-I errors
as Type-II. Finally, low-level code generation and optimization
strategies often vary across precisions, which can alter high-
precision execution results and potentially mask underlying
issues. (e.g., #2680).

In addition, this approach does not necessarily help devel-
opers gain confidence in adopting low-precision implementa-
tions, regardless of the high-precision behavior. For example,
in issue #4551, the developer compared four versions of a
kernel using either f32 or TF32 in Triton and PyTorch. While
the errors with f32 were acceptable, those with TF32 were
considered unacceptable. The developers remained uncertain
about TF32’s behavior and suspected potential bugs. The
experimental results and potential concerns of high-precision
execution further indicate that RENDER is more effective in
classifying the root cause of errors in deep learning kernels.

Answer to RQ1: RENDER can successfully classify all the
issues in the dataset, while SATIRE and High-Precision
Re-execution classify 12 and 15 out of 20 issues, respec-
tively. In addition, RENDER can always provide tighter
interval estimations compared to SATIRE.

2) RQ2: Efficiency: To answer RQ2, we compare the time
costs of RENDER with SATIRE and evaluate the runtime
overhead. We do not list the results of High-Precision Re-
execution, as the running time of higher precision is similar
to that of the original program and our focus is the overhead of
interval error estimation. As shown in Fig. 5a, our RENDER ex-
hibits significantly lower runtime compared to SATIRE. Con-
sidering the average across all cases, our approach achieves
a 19× speedup over SATIRE. While SATIRE is designed for
large-scale numerical programs, it encounters timeouts in 25%
of the test cases. In contrast, our approach successfully handles
all test cases and runs faster than SATIRE in most cases. In
the three cases where SATIRE runs faster than our approach,
the execution times are all less than ten seconds. This is
because the initial startup time of RENDER is longer due to the
involvement of the Triton runtime. We argue that these cases
are of little practical significance. These experimental results

demonstrate that RENDER is not only more efficient but also
more practical than SATIRE for real-world computations.

In Fig. 5b, we measure the runtime overhead by comparing
the execution time of the target program with and without
interval error estimation. RENDER incurs an average overhead
of 2.7x, with a maximum of 9x. While the overhead of
our approach is noticeable, it remains manageable given the
efficiency gains achieved through its practical application in
real-world scenarios. Furthermore, the overhead is relatively
consistent across test cases, making it predictable and scalable.

Answer to RQ2: RENDER runs faster 19x than SATIRE
and incurs a runtime overhead of 2.7x on average, which
indicates its efficiency in practice.

3) RQ3: Neural Network level Classification: To answer
RQ3, we evaluate RENDER on the DL programs collected
from real-world issues in the PyTorch community. Following
the same data collection process, we select 7 cases. We first
localize the layers based on the issues and conduct the same
kernel-level analysis, as discussed in Section III-C. Since
several cases involve C++, we also implement the prototype of
our approach for them. As a result, 6 of 7 cases are classified
successfully, which shows that RENDER can still provide an
error bound to help developers understand the root cause of
the error for the neural network. For the gradient accumulation
cases mentioned in the introduction, RENDER can bound the
error by a much tighter interval. The key point is that the
only difference lies in the final cross_entropy function.
Instead of estimating loss from the first layer, where the results
are generally uncontrollable, RENDER starts on the last layer,
which indicates the effectiveness of our technique. RENDER
fails on the tanh cases, where the developer uses a hand-
written implementation for tanh function, i.e. 2

1+e−2x − 1.
It causes a much smaller error, which is amplified by the
following atan2 functions. The interval estimated by our
approach is wider than the error bounds, and we decide it
as a Type-I error wrongly. To overcome this limitation, we
plan to incorporate error propagation analysis that accounts
for the sensitivity of downstream functions.

False Positives and Negatives. In principle, our approach
always provides an error bound that is no smaller than the
actual round-off error, ensuring that if the error is indeed
Type-I (round-off error), it can always be classified correctly.
A detailed discussion of potential threats to soundness is
provided in Section V-C2. Our experiments further provide
empirical evidence of this property: we did not observe any
false positives, i.e., cases where our approach classifies an
error as Type-II when it is actually Type-I. It also indicates
that our approach is effective in identifying and classifying
round-off errors in practice. In contrast, false negatives, i.e.
cases where our approach classifies an error as Type-I when
it is actually Type-II, can occasionally occur. Although im-
plementation bugs typically introduce errors far larger than
round-off errors, there are situations where the resulting errors
are small enough to fall within the estimated intervals, thereby
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Fig. 5: Time costs comparison of RENDER.

failing to capture the bug, e.g. the tanh case mentioned above.
Nevertheless, such cases were very limited in our evaluation,
indicating that the trade-off between precision and recall is
acceptable. We acknowledge that certain implementation bugs
may not be triggered by the given inputs, potentially leading
to additional false negatives. These latent bugs are beyond the
scope of our approach, which is intended to support developers
once observable mismatches arise. In conclusion, our method
provides a practical means for analyzing numerical errors,
while acknowledging the possibility of false negatives.

Answer to RQ3: RENDER is able to classify 6 of 7
cases in neural network level cases, which shows its
effectiveness of our approach.

V. DISCUSSION

A. Why interval arithmetic is more effective than symbolic
Taylor expansion?

It may be surprising that interval arithmetic (RENDER)
outperforms symbolic Taylor expansion (SATIRE) in our
experiments, both in terms of bound precision and efficiency.
Symbolic Taylor expansion used by SATIRE is more accurate
than interval arithmetic by our approach in theory, however,
it does not give a tighter bound in practice. We found two
reasons to explain it. (1) The advantage of symbolic Taylor
expansion lies in its ability to utilize the relationships between
variables for more accurate error estimation. However, since
the variable relationships in our dataset are not complex and
the errors can be considered independent, the strength of
SATIRE is not fully exploited. (2) SATIRE does not support
mixed precision, which may lead to overestimation of the error.
For example, the machine epsilon of float16 is approximately
9.77 × 10−4, while for float32, it is about 1.19 × 10−7,
a difference of roughly 100x. In matrix multiplication, the
summation error is given by (m − 1) × ε+, where m is the
number of elements being summed. Suppose we use the larger
machine epsilon of float16, the error will be overestimated
by 100x, much larger than the difference between the errors
predicted by Taylor expansion and interval arithmetic. In
addition, we apply the same precision constraint in RENDER

as in SATIRE (i.e., using the lowest precision). Experimental
results show that our approach correctly classified 19 out
of 20 cases. For issue #1821, which is in fact a compiler
error, RENDER misclassified it as a Type-I (round-off error).
This misclassification was caused by a wider interval resulting
from not accounting for mixed-precision effects, leading to a
false negative. These underscore the importance of properly
handling mixed precision in practice.

B. Case Study and Developer Feedback

To better understand the practical impact of our approach,
we conducted a case study and examined 7 open issues.
Excluding 2 older cases from 2023, we provided comments
and potential solutions for the remaining 5. Among these, we
received feedback on 3: two developers responded positively
and agreed with our analysis and solutions, while another
developer remained uncertain and considered alternative ex-
planations. These results suggest that RENDER can effectively
assist developers in understanding the root causes of many
errors in practice. We select three representative issues from
the dataset to demonstrate the classification results.

1) Case 1: Round-off Error: The first example is about
matrix multiplication in issue #1808, where the error is due to
the round-off error but is considered a bug by the developer.
The code snippet is shown below.

1 A += ram * stride_am + rk * stride_ak
2 B += rk * stride_bk + rbn * stride_bn
3 acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=ACC_TYPE)
4 for k in range(K, 0, -BLOCK_K * SPLIT_K):
5 a = tl.load(A, mask=rk[None, :] < k, other=0.0)
6 b = tl.load(B, mask=rk[:, None] < k, other=0.0)
7 acc += tl.dot(a, b)
8 A += BLOCK_K * SPLIT_K * stride_ak
9 B += BLOCK_K * SPLIT_K * stride_bk

10 acc = acc.to(C.dtype.element_ty)
11 rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
12 rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
13 C += rm * stride_cm + rn * stride_cn
14 if SPLIT_K == 1:
15 tl.store(C, acc)
16 else:
17 tl.atomic_add(C, acc)

Lines 1-13 represent typical matrix multiplication code
that calculates the offset, loads the data, and performs the
computation. When SPLIT_K is set to 1, the output tensor is
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directly updated by tl.store, otherwise, the output tensor
is updated by tl.atomic_add (Line 14-17) by different
threads atomically. However, the summation order is not
fixed and is determined in runtime, which can lead to minor
differences in the results. In practice, the maximum difference
can be 0.1875, which the developer initially considered a
bug. Upon reviewing the code, we determined that the issue
arises from round-off errors in the addition operations and
communicated this to the developer.

It is worth noting that after we comment on the issue with
our analysis results and the above explanation, the developer
acknowledges the round-off error and confirms the possibility.
It indicates that RENDER can help developers understand the
root cause of the error in practice.

2) Case 2: Compiler Bug: The second example reveals a
compiler bug that causes incorrect results in attention compu-
tation in issue #1821. The issue stems from an incorrect cal-
culation of the number of unique threads within a warp—the
compiler failed to properly account for the number of elements
processed per thread. This leads to incorrect behavior in certain
cases, resulting in a maximum difference of 0.15 in the output.
In this case, RENDER concludes that the error is due to a Type-
II error as 0.23 /∈ [0.32, 0.37], i.e., the maximum difference
is outside the interval. This bug occurs only in large-scale
computations, and SATIRE times out on this issue, so it cannot
detect it. Our approach can handle this issue in 12 minutes.

3) Case 3: Implementation Bug: The last example in is-
sue #1666 illustrates an implementation bug in code that aims
to compute the matrix multiplication between the transpose
of tensor A and B. However, the developer mistakenly uses
stride_ak and stride_am in the offset calculation, as
shown below. The code snippet is shown below.

- a_ptrs = a_ptr + (offs_k[:, None] * stride_ak
- + offs_am[None, :] * stride_am)
+ a_ptrs = a_ptr + (offs_k[:, None] * stride_am
+ + offs_am[None, :] * stride_ak)

In this case, the element with the maximum difference is
approximately -0.6, which does not fall within the interval
[10.001, 10.079] estimated by our approach, indicating a clear
bug. Interestingly, the developer did not identify this issue at
first, and it was only after a thorough review by the maintainer
of Triton that the bug was discovered. This highlights the
difficulty of debugging such issues, and our approach can play
a crucial role in the first step of classifying the root cause.

C. Threats to Validity

1) External Validity: For external validity, it arises from the
dataset collection and labeling process, as we manually curated
and labeled the issues from the Triton and PyTorch commu-
nities. This introduces the possibility of bias in the dataset,
particularly in terms of how we categorize and interpret the
issues related to precision and error. To mitigate this bias,
we reproduce each reported issue and engage in discussions
with developers for open issues to better understand the root
causes. Furthermore, the issues we selected for our dataset of
the kernel-level come from a single deep learning framework

(Triton), which may limit the generalizability of RENDER to
other frameworks or domains. As Triton is widely used in
deep learning communities, we believe that the insights from
this dataset can be valuable for identifying and classifying
precision errors in other deep learning frameworks as well.

2) Internal Validity: The major threat to internal validity is
the soundness on interval arithmetic for error estimation. We
use double-precision for the intervals rather than arbitrary-
precision libraries such as mpmath, which may affect the
soundness of our approach. However, this would slow down
runtime, as to the best of our knowledge, such libraries do not
benefit from GPU acceleration significantly. Double-precision
is already sufficiently accurate when compared to widely used
formats such as TF32 and BF16 in deep learning. Therefore,
we chose double precision in our implementation as a balance
between soundness and efficiency. In addition, our approach
might underestimate the interval, as ULP bounds listed in
TABLE II are not guaranteed in CUDA [23]. We believe
that such cases are rare, as the inputs used by developers are
typically randomly generated, rather than carefully designed
to trigger numerical instability.

D. Limitation and Future Work

Binary Classification. The main limitation of RENDER
is that it only classifies errors into two types: Type-I and
Type-II. While this classification serves as a useful starting
point for identifying the nature of floating-point errors, it is
not sufficient for a detailed root cause analysis. Developers
may still need to conduct additional investigations into the
code to pinpoint the exact cause of the error, especially
in more complex cases where multiple contributing factors
might be involved. In future work, we plan to explore more
advanced classification techniques that can move beyond the
two-class system. In addition to considering more types of
errors, techniques such as machine learning-based classifica-
tion or hierarchical error classification may allow for finer-
grained analysis and a deeper understanding of the underlying
causes of floating-point errors. This would help developers
better diagnose errors that involve more complex interactions
between operations in large-scale deep learning models.

Manual Effort. A limitation of RENDER is the manual
effort required to define interval semantics for each floating-
point operator. Although the set of operators in deep learn-
ing frameworks is finite, their numerical behaviors are often
non-trivial to model. To mitigate this challenge, we outline
several directions. First, most operators can be grouped into
a few categories, such as linear algebra kernels, element-
wise arithmetic, and reduction operations. For each category,
interval propagation rules can be systematically derived and
reused, rather than implemented individually. Second, existing
operator specifications (e.g., ONNX or MLIR dialects) can be
leveraged to automatically generate interval semantics, thereby
reducing the need for manual coding. Finally, in deep learn-
ing, many complex mathematical functions are rarely used,
and implementing interval semantics for the most common
operators is sufficient to handle the majority of real-world
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workloads. These strategies suggest that developing practical
interval semantics for deep learning operators is both feasible
and scalable, despite the complexity of individual cases.

Limited Scope. Another limitation is that the scope of the
evaluation focused mainly on Triton and PyTorch framework.
We believe our approach can be easily generalized to other
frameworks as the core tensor interval abstraction such as
arithmetic operation is shared and framework independent.
With reasonable engineering effort, it can be adapted to
accommodate the different APIs used by various frameworks.

VI. RELATED WORK

A. Estimation and Testing of Floating-Point Error

As the floating-point error is inevitable, the estimation of
the maximum floating-point error has been studied extensively
in traditional numerical computing [21], [28], [25]. Interval
arithmetic [21] approximates rounding errors by maintaining
the lower and upper bounds, ensuring the true result lies
within the computed bounds. However, it cannot model the
relations of variables, which may cause false positives. Since
interval arithmetic cannot capture the correlations between
inputs, affine arithmetic [28] has been proposed to refine these
bounds by representing the error as an affine form. Rosa [29]
uses SMT solvers to generate a finite-precision implementation
guaranteed to meet the desired precision for real numbers.
For more accurate error estimation in higher-order terms,
Solovyev et al. [25] propose a tool called FPTaylor, based
on symbolic Taylor expansions, which has been used to verify
the mixed precision synthesis tool FPTuner [30]. SATIRE [15]
tries to scale the Taylor expansion to large-scale programs
based on several heuristics. Although Taylor expansion-based
approaches can offer more accurate error estimates, their
computational cost is often prohibitive. In contrast, our method
focuses on error analysis in DL programs and provides fast
feedback to developers. While our approach may not be as
theoretically accurate as symbolic Taylor expansion, such as
SATIRE, it is more efficient for deep learning programs.

Other works adopt a testing-based perspective, aiming to
search for inputs that can trigger larger errors, such as
Eiffel [31]. Zou et al. use atomic condition to effectively
guide the search for large floating-point errors [32], which
depends on the condition of single floating-point operations.
However, atomic condition is insufficient and does not provide
a comprehensive solution for all scenarios. Based on the
above work, FPCC generalizes the atomic condition to chain
conditions [33], which guides the search more sophisticatedly.
After the error is estimated, the next step is to repair the
identified issues and improve the numerical stability of the
program. Herbie [34] and Salsa [35] improve the numerical
stability of floating-point programs by automatically rewriting
the code. Zou et al. [36] propose an oracle-free method to
repair floating-point programs dynamically.

B. Analysis and Testing of Deep Learning Programs

Instead of focusing on round-off error in floating-point
numbers, another line of our related work focuses on the

analysis and testing of deep learning programs and operators.
Predoo [37] is an early work in precision testing of DL
programs, which treats the testing process as a search problem
and aims to find inputs that lead to large precision errors.
Duo [38] uses differential testing to compare the outputs
of different model implementations on the same input and
identifies inconsistencies that may indicate bugs. Chen et
al. [39] apply metamorphic testing, checking whether certain
relationships between inputs and outputs always hold.

Zhang et al. [27] propose DEBAR, a tool to detect numerical
errors in deep learning programs based on interval abstrac-
tion in the abstract interpretation framework [40]. While our
approach and DEBAR both use intervals, the key differences
between our approach and DEBAR lie in their goals: RENDER
aims to explain mismatches to a reference implementation,
whereas DEBAR aims to explore numerical bugs(e.g., NAN)
for given programs. Our approach uses interval arithmetic
to dynamically estimate the potential round-off errors and
classify the root cause. In contrast, DEBAR uses interval
abstraction to statically estimate the lower and upper bounds,
then detects unsafe operations based on the interval. RENDER
can be used to identify potential bugs by classifying them as
Type-II, i.e., implementation bugs. These bugs often involve
general semantic issues rather than purely numerical errors,
typically arising from compilation faults or from operators
that fail to implement the intended functionality of the ref-
erence implementation. Since DEBAR focuses exclusively on
numerical errors, it is not suitable for detecting such semantic
mismatches; therefore, we did not include it as a baseline in
our evaluation.

VII. CONCLUSION

Deep learning programs are becoming increasingly popular,
with many different optimizations available for the same
formula for performance purposes. Developers often face chal-
lenges in debugging when the outputs of two implementations
differ. In this work, we present a lightweight, dynamic interval
analysis framework for estimating round-off errors in DL
programs and classifying the errors based on the intervals.
Our method offers practical and effective error estimation by
executing the target program and tracking the interval bounds
of intermediate tensors. Compared to the baseline approach,
our method accurately classifies numerical errors and helps
identify stability issues in real-world DL programs. Further-
more, the experimental results show that the runtime overhead
of our approach is acceptable and does not undermine its
practicality. Overall, our approach bridges the gap between
theory and practice in round-off error estimation, improving
the reliability of deep learning systems.

Our implementation and dataset are available at https://
github.com/Qi-Zhan/Render.
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